Abstract

A White-cell-based binary optical true-time-delay device has two parts: the controller, or switching engine, and the delay elements. Here we discuss in detail the design of both glass blocks and lens trains as delay elements. Glass blocks can be used in our design for delays ranging from one to a few hundred picoseconds. Lens trains are suitable for longer delays. We also analyze the loss associated with each design and give design limits.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zmuda, E. N. Toughlian, Photonic Aspects of Modern Radar, B. Culshaw, A. Rogers, H. Taylor, eds. (Artech House, Boston, 1994).
  2. W. Ng, A. A. Watson, “The first demonstration of an optically steering microwave phased array antenna using true-time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
    [CrossRef]
  3. A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1991).
    [CrossRef]
  4. P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
    [CrossRef]
  5. H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
    [CrossRef]
  6. A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
    [CrossRef]
  7. A. P. Goutzoulis, J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997).
    [CrossRef]
  8. R. Taylor, S. Forrest, “Steering of an optical-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
    [CrossRef]
  9. G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
    [CrossRef]
  10. D. A. Cohern, Y. Chang, G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1688–1685 (1996).
  11. B. Tsap, Y. Change, H. R. Fetterman, F. J. Levi, D. A. Cohen, I. Newberg, “Phased array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
    [CrossRef]
  12. J. L. Cruz, L. Dong, S. Barcelso, L. Reekie, “Fiber Bragg gratings with various chirp profiles in etched tapers,” Appl. Opt. 35, 6781–6787 (1996).
    [CrossRef] [PubMed]
  13. M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
    [CrossRef]
  14. Z. Fu, C. Zhou, R. T. Chen, “Waveguide hologram-based wavelength-division multiplexed pseudoanalgo true time-delay module for wide-band phased array antennas,” Appl. Opt. 28, 3053–3059 (1999).
    [CrossRef]
  15. R. L. Qi, X. Fu, R. Chen, “High packing-density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
    [CrossRef]
  16. L. Eldada, “Laser-fabricated delay lines in GaAs for optically steered phased-array radar,” J. Lightwave Technol. 13, 2034–2039 (1995).
    [CrossRef]
  17. X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
    [CrossRef]
  18. M. Madamopoulos, N. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 27, 1407–1416 (1998).
    [CrossRef]
  19. N. A. Riza, “25-Channel nematic liquid-crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995).
    [CrossRef]
  20. E. N. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
    [CrossRef]
  21. S. A. Collins, B. L. Anderson, “Device and method for producing optically-controlled incremental time delays,” U.S. patent6,388,615 (14May2002).
  22. B. L. Anderson, R. Mital, “Polynomial-based optical true-time delay devices using MEMS,” Appl. Opt. 41, 5449–5461 (2002).
    [CrossRef] [PubMed]
  23. B. L. Anderson, C. D. Liddle, “Optical true-time delay for phased array antennas demonstration of a quadratic White cell,” Appl. Opt. 41, 4912–4921 (2002).
    [CrossRef] [PubMed]
  24. J. White, “Long paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
    [CrossRef]
  25. R. Higgins, N. K. Nahar, B. L. Anderson, “Design and demonstration of a switching engine for a binary true-time-delay device that uses a White cell,” Appl. Opt. 42, 4747–4757 (2003).
    [CrossRef] [PubMed]
  26. B. L. Anderson, S. A. Collins, C. A. Klein, E. A. Beecher, S. B. Brown, “Photonically produced true-time delays for phased antenna arrays,” Appl. Opt. 36, 8493–9503 (1997).
    [CrossRef]
  27. V. Argueta-Diaz, B. L. Anderson, “Reconfigurable photonic switch based on a binary system using the White cell and micromirror arrays,” J. Special Topics in Quantum Electron. (to be published).

2003 (1)

2002 (2)

1999 (1)

Z. Fu, C. Zhou, R. T. Chen, “Waveguide hologram-based wavelength-division multiplexed pseudoanalgo true time-delay module for wide-band phased array antennas,” Appl. Opt. 28, 3053–3059 (1999).
[CrossRef]

1998 (5)

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

R. Taylor, S. Forrest, “Steering of an optical-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
[CrossRef]

B. Tsap, Y. Change, H. R. Fetterman, F. J. Levi, D. A. Cohen, I. Newberg, “Phased array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

M. Madamopoulos, N. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 27, 1407–1416 (1998).
[CrossRef]

1997 (3)

1996 (2)

D. A. Cohern, Y. Chang, G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1688–1685 (1996).

J. L. Cruz, L. Dong, S. Barcelso, L. Reekie, “Fiber Bragg gratings with various chirp profiles in etched tapers,” Appl. Opt. 35, 6781–6787 (1996).
[CrossRef] [PubMed]

1995 (2)

N. A. Riza, “25-Channel nematic liquid-crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995).
[CrossRef]

L. Eldada, “Laser-fabricated delay lines in GaAs for optically steered phased-array radar,” J. Lightwave Technol. 13, 2034–2039 (1995).
[CrossRef]

1994 (2)

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

1992 (1)

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

1991 (2)

W. Ng, A. A. Watson, “The first demonstration of an optically steering microwave phased array antenna using true-time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1991).
[CrossRef]

1990 (1)

E. N. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

1987 (1)

M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
[CrossRef]

1942 (1)

Anderson, B. L.

Argueta-Diaz, V.

V. Argueta-Diaz, B. L. Anderson, “Reconfigurable photonic switch based on a binary system using the White cell and micromirror arrays,” J. Special Topics in Quantum Electron. (to be published).

Ball, G. A.

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

Barcelso, S.

Beecher, E. A.

Brown, S. B.

Chang, Y.

D. A. Cohern, Y. Chang, G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1688–1685 (1996).

Change, Y.

B. Tsap, Y. Change, H. R. Fetterman, F. J. Levi, D. A. Cohen, I. Newberg, “Phased array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Chen, R.

R. L. Qi, X. Fu, R. Chen, “High packing-density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

Chen, R. T.

Z. Fu, C. Zhou, R. T. Chen, “Waveguide hologram-based wavelength-division multiplexed pseudoanalgo true time-delay module for wide-band phased array antennas,” Appl. Opt. 28, 3053–3059 (1999).
[CrossRef]

Cohen, D. A.

B. Tsap, Y. Change, H. R. Fetterman, F. J. Levi, D. A. Cohen, I. Newberg, “Phased array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Cohern, D. A.

D. A. Cohern, Y. Chang, G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1688–1685 (1996).

Collins, S. A.

B. L. Anderson, S. A. Collins, C. A. Klein, E. A. Beecher, S. B. Brown, “Photonically produced true-time delays for phased antenna arrays,” Appl. Opt. 36, 8493–9503 (1997).
[CrossRef]

S. A. Collins, B. L. Anderson, “Device and method for producing optically-controlled incremental time delays,” U.S. patent6,388,615 (14May2002).

Cruz, J. L.

Davies, D. K.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1991).
[CrossRef]

Dong, L.

Eldada, L.

L. Eldada, “Laser-fabricated delay lines in GaAs for optically steered phased-array radar,” J. Lightwave Technol. 13, 2034–2039 (1995).
[CrossRef]

Esman, R. D.

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

Fetterman, H. R.

B. Tsap, Y. Change, H. R. Fetterman, F. J. Levi, D. A. Cohen, I. Newberg, “Phased array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

D. A. Cohern, Y. Chang, G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1688–1685 (1996).

Forrest, S.

R. Taylor, S. Forrest, “Steering of an optical-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
[CrossRef]

Frankel, M. Y.

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

Fu, X.

R. L. Qi, X. Fu, R. Chen, “High packing-density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

Fu, Z.

Z. Fu, C. Zhou, R. T. Chen, “Waveguide hologram-based wavelength-division multiplexed pseudoanalgo true time-delay module for wide-band phased array antennas,” Appl. Opt. 28, 3053–3059 (1999).
[CrossRef]

Glenn, W. H.

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

Goldberg, L.

M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
[CrossRef]

Goutzoulis, A. P.

Higgins, R.

Klein, C. A.

Klumpke, H. W.

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

Levi, F. J.

B. Tsap, Y. Change, H. R. Fetterman, F. J. Levi, D. A. Cohen, I. Newberg, “Phased array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Levi, G. J.

D. A. Cohern, Y. Chang, G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1688–1685 (1996).

Liddle, C. D.

Madamopoulos, M.

M. Madamopoulos, N. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 27, 1407–1416 (1998).
[CrossRef]

Maleki, L.

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

Matthews, P. J.

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

Mital, R.

Morey, W. W.

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

Nahar, N. K.

Newberg, I.

B. Tsap, Y. Change, H. R. Fetterman, F. J. Levi, D. A. Cohen, I. Newberg, “Phased array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Newberg, I. L.

D. A. Cohern, Y. Chang, G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1688–1685 (1996).

Ng, W.

W. Ng, A. A. Watson, “The first demonstration of an optically steering microwave phased array antenna using true-time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Parent, M.

M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
[CrossRef]

Payson, P.

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

Qi, R. L.

R. L. Qi, X. Fu, R. Chen, “High packing-density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

Reekie, L.

Riza, N.

M. Madamopoulos, N. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 27, 1407–1416 (1998).
[CrossRef]

Riza, N. A.

N. A. Riza, “25-Channel nematic liquid-crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995).
[CrossRef]

Stillwell, D.

M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
[CrossRef]

Tamburrini, M.

M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
[CrossRef]

Taylor, R.

R. Taylor, S. Forrest, “Steering of an optical-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
[CrossRef]

Toughlian, E. N.

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

E. N. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

H. Zmuda, E. N. Toughlian, Photonic Aspects of Modern Radar, B. Culshaw, A. Rogers, H. Taylor, eds. (Artech House, Boston, 1994).

Tsap, B.

B. Tsap, Y. Change, H. R. Fetterman, F. J. Levi, D. A. Cohen, I. Newberg, “Phased array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Watson, A. A.

W. Ng, A. A. Watson, “The first demonstration of an optically steering microwave phased array antenna using true-time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

White, J.

Yao, X. S.

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

Zhou, C.

Z. Fu, C. Zhou, R. T. Chen, “Waveguide hologram-based wavelength-division multiplexed pseudoanalgo true time-delay module for wide-band phased array antennas,” Appl. Opt. 28, 3053–3059 (1999).
[CrossRef]

Zmuda, H.

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

E. N. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

H. Zmuda, E. N. Toughlian, Photonic Aspects of Modern Radar, B. Culshaw, A. Rogers, H. Taylor, eds. (Artech House, Boston, 1994).

Zomp, J. M.

A. P. Goutzoulis, J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Appl. Opt. (9)

Z. Fu, C. Zhou, R. T. Chen, “Waveguide hologram-based wavelength-division multiplexed pseudoanalgo true time-delay module for wide-band phased array antennas,” Appl. Opt. 28, 3053–3059 (1999).
[CrossRef]

M. Madamopoulos, N. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 27, 1407–1416 (1998).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1991).
[CrossRef]

B. L. Anderson, S. A. Collins, C. A. Klein, E. A. Beecher, S. B. Brown, “Photonically produced true-time delays for phased antenna arrays,” Appl. Opt. 36, 8493–9503 (1997).
[CrossRef]

J. L. Cruz, L. Dong, S. Barcelso, L. Reekie, “Fiber Bragg gratings with various chirp profiles in etched tapers,” Appl. Opt. 35, 6781–6787 (1996).
[CrossRef] [PubMed]

A. P. Goutzoulis, J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997).
[CrossRef]

B. L. Anderson, C. D. Liddle, “Optical true-time delay for phased array antennas demonstration of a quadratic White cell,” Appl. Opt. 41, 4912–4921 (2002).
[CrossRef] [PubMed]

B. L. Anderson, R. Mital, “Polynomial-based optical true-time delay devices using MEMS,” Appl. Opt. 41, 5449–5461 (2002).
[CrossRef] [PubMed]

R. Higgins, N. K. Nahar, B. L. Anderson, “Design and demonstration of a switching engine for a binary true-time-delay device that uses a White cell,” Appl. Opt. 42, 4747–4757 (2003).
[CrossRef] [PubMed]

Electron. Lett. (1)

M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
[CrossRef]

IEEE J. Lightwave Technol. (1)

W. Ng, A. A. Watson, “The first demonstration of an optically steering microwave phased array antenna using true-time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

N. A. Riza, “25-Channel nematic liquid-crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995).
[CrossRef]

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

R. Taylor, S. Forrest, “Steering of an optical-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
[CrossRef]

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

D. A. Cohern, Y. Chang, G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1688–1685 (1996).

B. Tsap, Y. Change, H. R. Fetterman, F. J. Levi, D. A. Cohen, I. Newberg, “Phased array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

J. Lightwave Technol. (3)

R. L. Qi, X. Fu, R. Chen, “High packing-density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

L. Eldada, “Laser-fabricated delay lines in GaAs for optically steered phased-array radar,” J. Lightwave Technol. 13, 2034–2039 (1995).
[CrossRef]

E. N. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Other (3)

S. A. Collins, B. L. Anderson, “Device and method for producing optically-controlled incremental time delays,” U.S. patent6,388,615 (14May2002).

H. Zmuda, E. N. Toughlian, Photonic Aspects of Modern Radar, B. Culshaw, A. Rogers, H. Taylor, eds. (Artech House, Boston, 1994).

V. Argueta-Diaz, B. L. Anderson, “Reconfigurable photonic switch based on a binary system using the White cell and micromirror arrays,” J. Special Topics in Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

In the original White cell (top), the field mirror, which is spherical, can be replaced with a flat mirror and a lens. The flat mirror can be divided into two parts, one for even-numbered light bounces and one for odd. Replacing one of these mirrors with a LC SLM (bottom) permits the beam to be switched on every bounce.

Fig. 2
Fig. 2

(a) Dual White cell sharing a common beam splitter. (b) Spot patterns for five input beams. The odd-numbered spots form on the SLM. The even-numbered spots form on either auxiliary mirror I or auxiliary mirror II. (c) Auxiliary mirror II is replaced by a time-delay device (here a set of glass blocks). In the binary cell, each even-numbered spot that forms on the time-delay element is delayed twice as long as the delay from the previous bounce.

Fig. 3
Fig. 3

Top view of a White cell containing a glass block delay element.

Fig. 4
Fig. 4

There is a limit to the time delay that can be obtained with glass blocks because the beam divergence will eventually cause truncation.

Fig. 5
Fig. 5

Effect of magnification and refractive index on the maximum allowable delay for a glass block.

Fig. 6
Fig. 6

Glass block design sample, with a time-delay increment of 1 ps. The dimensions are listed in Table 1.

Fig. 7
Fig. 7

Lens train (a) The spots are reimaged onto each conjugate plane. A mirror strip in each conjugate plane (CP) intercepts the appropriate column of the spot pattern and returns it to the White cell.1 (b) Close-up of lens group 3.

Fig. 8
Fig. 8

Fibers as delay elements. The input and output planes are tipped to receive light from mirror E and return it to mirror F. The field lenses are not shown.

Fig. 9
Fig. 9

Losses in the glass block delay element as a function of the delay number.

Fig. 10
Fig. 10

Loss in the lens train delay elements as a function of the delay selected. This plot assumes three lenses per lens group. The loss for glass block is superimposed for comparison.

Fig. 11
Fig. 11

Loss comparisons among a binary cell with glass blocks, a binary cell with a lens train, and a quadratic cell.23

Tables (2)

Tables Icon

Table 1 Dimensions for Glass Blocks of Design Sample

Tables Icon

Table 2 Specific Values for Lenses in Lens Train Design Sample in Section 3.1

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

N=2m/2.
B=0=2dEF-d1n1-dEF2f1.
f=dEF21-d1n1dEF.
d2 min=2dBC-dBC2f1-d1n1.
Tmin=2cn1d1+2dBC+d2 min=2cn1d1+2dBC+22dBC-dBC2f1-d1n1.
d2n2+d2=2dEF-dEF2f-d1n1.
cTI2=n1d1+2dEF+n2d2+d2.
d2=n2n22-1c2ΔT,
d2=d2 min+1n2+1c2 ΔT=d2+d2,
d2=d2-d2=d2 min+1n2+1-n2n22-1c2 ΔT.
wz=w01+2zn2k0w0221/2,
PcapturedPtotal=erf2W2wz2.
wzW0.26.
TDB=TFRMTF=RMTF2=0.9990.99752=0.994,
Loss=-10N logTSW+fnn10 logRM+N-f1n10 logTDB,
f1n=N-i=1N ai.
Loss=-10N logTSW+f1n10 logRM+f2n10 logTL2l.
f2n=i=1N aii.

Metrics