Abstract

A Michelson-type spectral interferometer that uses a common beam path for the reference and the sample arms is described. This optical arrangement is more compact and stable than the more commonly used dual-arm interferometer and is well suited for frequency-domain optical coherence tomography of biological samples. With a 16-bit CCD camera, the instrument has sufficient dynamic range and resolution for imaging to depths of 2 mm in scattering biological materials. Images obtained with this spectral interferometer are presented, including cross-sectional images in a Xenopus laevis tadpole.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  2. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
    [CrossRef]
  3. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  4. A. F. Zuluaga, R. Richards-Kortum, “Spatially resolved spectral interferometry for determination of subsurface structure,” Opt. Lett. 24, 519–521 (1999).
    [CrossRef]
  5. G. Häusler, M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  6. L. Lepetit, G. Chériaux, M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
    [CrossRef]
  7. M. W. Lindner, P. Andretzky, F. Kiesewetter, G. Häusler, “Spectral radar: optical coherence tomography in the Fourier domain,” in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 335–357.
  8. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
    [CrossRef]
  9. A. M. Rollins, J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999).
    [CrossRef]
  10. Killed tadpoles were used to comply with National Institutes of Health regulations regarding the use of live, vertebrate animals. (We do not have approval for experimentation that uses live vertebrates.) This SI method should be as applicable to live, in vivo measurements as time-domain OCT, although this remains to be demonstrated.
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  12. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
    [CrossRef] [PubMed]
  13. A. B. Vakhtin, K. A. Peterson, W. R. Wood, D. J. Kane, “Differential spectral interferometry: an imaging technique for biomedical applications,” Opt. Lett. 28, 1332–1334 (2003).
    [CrossRef] [PubMed]

2003

2002

1999

1998

1997

1996

1995

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Andretzky, P.

M. W. Lindner, P. Andretzky, F. Kiesewetter, G. Häusler, “Spectral radar: optical coherence tomography in the Fourier domain,” in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 335–357.

Boppart, S. A.

Bouma, B. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chériaux, G.

Drexler, W.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Golubovic, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Häusler, G.

G. Häusler, M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

M. W. Lindner, P. Andretzky, F. Kiesewetter, G. Häusler, “Spectral radar: optical coherence tomography in the Fourier domain,” in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 335–357.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Izatt, J. A.

Joffre, M.

Kane, D. J.

Kärtner, F. X.

Kiesewetter, F.

M. W. Lindner, P. Andretzky, F. Kiesewetter, G. Häusler, “Spectral radar: optical coherence tomography in the Fourier domain,” in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 335–357.

Kowalczyk, A.

Kulkarni, M. D.

Leitgeb, R.

Lepetit, L.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler, M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

M. W. Lindner, P. Andretzky, F. Kiesewetter, G. Häusler, “Spectral radar: optical coherence tomography in the Fourier domain,” in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 335–357.

Morgner, U.

Peterson, K. A.

Pitris, C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Richards-Kortum, R.

Rollins, A. M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Ung-arunyawee, R.

Vakhtin, A. B.

Wojtkowski, M.

Wood, W. R.

Yazdanfar, S.

Zuluaga, A. F.

J. Biomed. Opt.

G. Häusler, M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

Killed tadpoles were used to comply with National Institutes of Health regulations regarding the use of live, vertebrate animals. (We do not have approval for experimentation that uses live vertebrates.) This SI method should be as applicable to live, in vivo measurements as time-domain OCT, although this remains to be demonstrated.

M. W. Lindner, P. Andretzky, F. Kiesewetter, G. Häusler, “Spectral radar: optical coherence tomography in the Fourier domain,” in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 335–357.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated SI data for a single reflective surface. (a) Input light-source spectrum. (b) Output spectral interferogram. (c) Spectral interferogram with the input spectrum removed. (d) Fourier transform of the spectral interferogram.

Fig. 2
Fig. 2

Schematic of the SI in which the reference and sample arms share the same beam path. The reference plane is defined by the back surface of the glass plate. Lenses are excluded from the schematic for clarity. See text for details.

Fig. 3
Fig. 3

Cross-sectional SI image of the outer skin of an onion. The cell structure is visible.

Fig. 4
Fig. 4

Center: optical microscope image of the abdominal region of a Xenopus laevis tadpole viewed from the ventral surface. The head is to the right. Left and right: sagittal cross-sectional SI images. White lines drawn on the microscope image show the locations of the SI scans. The image-intensity gray scale is logarithmic. The lower three SI images on the right of the figure show streaked regions on their left sides where the scans exit the tadpole body. The center photograph and SI images are drawn to the same scale.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ISIω=IRω+ISω+2IRω ISω×cosϕSω-ϕRω-ωτ,
Sω=2IRω ISω cosϕSω-ϕRω-ωτ.
-1Sω=ft-τ+f-t-τ,

Metrics