Abstract

We report on highly efficient transmission gratings in fused silica with a grating period of 800 nm generated by electron-beam lithography. At a wavelength of 1060 nm, 95% diffraction efficiency is achieved under Littrow conditions. The damage threshold, extremely enhanced compared with conventional gold-coated diffraction gratings, makes these gratings the key elements in high average power (>100 W) femtosecond fiber chirped-pulse amplification systems.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [CrossRef]
  2. A. Liem, J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, “High average power femtosecond fiber CPA system,” in Advanced Solid-State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–132.
  3. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  4. A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7, 504–517 (2001).
    [CrossRef]
  5. R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
    [CrossRef] [PubMed]
  6. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997).
    [CrossRef]
  7. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bödefeld, W. Theobald, E. Welsch, R. Sauerbrey, H. Heyer, “High-efficiency dielectric reflection gratings: design, fabrication, and analysis,” Appl. Opt. 38, 6257–6271 (1999).
    [CrossRef]
  8. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
    [CrossRef] [PubMed]
  9. H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, M. D. Perry, “High-efficiency fused-silica transmission gratings,” Opt. Lett. 22, 142–144 (1997).
    [CrossRef] [PubMed]
  10. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1391 (1982).
    [CrossRef]
  11. E. Kley, M. Cumme, T. Clausnitzer, B. Schnabel, A. Stich, “Investigation of large area gratings fabricated by ultrafast e-beam writing,” in Advanced Optical Manufacturing and Testing Technology 2000, L. Yang, H. M. Pollicove, Q. Xin, J. C. Wyant, eds., Proc. SPIE4231, 116–125 (2000).
    [CrossRef]
  12. ISO 11254: “Test methods for laser-induced damage threshold of optical surfaces,” Part 2: S-on-1 test (International Organization for Standardization, Geneva, Switzerland, 2001).
  13. DIN, Deutsches Institut fuer Normung e.V., Charakterisierung von Laserstrahlen und Laseroptiken: Normen (Beuth-Verlag, Berlin, 2001), ISSN 0342-801X, pp. 99–138.

2002 (1)

2001 (1)

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7, 504–517 (2001).
[CrossRef]

1999 (1)

1997 (2)

1995 (2)

1985 (1)

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

1982 (1)

Bischoff, J.

Bödefeld, R.

Boyd, R. D.

Britten, J. A.

Bryan, S. J.

Chow, R.

Clausnitzer, T.

J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

E. Kley, M. Cumme, T. Clausnitzer, B. Schnabel, A. Stich, “Investigation of large area gratings fabricated by ultrafast e-beam writing,” in Advanced Optical Manufacturing and Testing Technology 2000, L. Yang, H. M. Pollicove, Q. Xin, J. C. Wyant, eds., Proc. SPIE4231, 116–125 (2000).
[CrossRef]

Cumme, M.

E. Kley, M. Cumme, T. Clausnitzer, B. Schnabel, A. Stich, “Investigation of large area gratings fabricated by ultrafast e-beam writing,” in Advanced Optical Manufacturing and Testing Technology 2000, L. Yang, H. M. Pollicove, Q. Xin, J. C. Wyant, eds., Proc. SPIE4231, 116–125 (2000).
[CrossRef]

Decker, D.

Decker, D. E.

Feit, M. D.

Fuchs, H.-J.

Galvanauskas, A.

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7, 504–517 (2001).
[CrossRef]

Gaylord, T. K.

Hehl, K.

Heyer, H.

Kley, E.

E. Kley, M. Cumme, T. Clausnitzer, B. Schnabel, A. Stich, “Investigation of large area gratings fabricated by ultrafast e-beam writing,” in Advanced Optical Manufacturing and Testing Technology 2000, L. Yang, H. M. Pollicove, Q. Xin, J. C. Wyant, eds., Proc. SPIE4231, 116–125 (2000).
[CrossRef]

Kley, E.-B.

Li, L.

Liem, A.

A. Liem, J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, “High average power femtosecond fiber CPA system,” in Advanced Solid-State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–132.

Limpert, J.

J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

A. Liem, J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, “High average power femtosecond fiber CPA system,” in Advanced Solid-State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–132.

Loomis, G. E.

Moharam, M. G.

Mohaupt, U.

Mourou, G.

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Nguyen, H. T.

Nolte, S.

A. Liem, J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, “High average power femtosecond fiber CPA system,” in Advanced Solid-State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–132.

Palme, M.

Perry, M. D.

Sauerbrey, R.

Schnabel, B.

K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bödefeld, W. Theobald, E. Welsch, R. Sauerbrey, H. Heyer, “High-efficiency dielectric reflection gratings: design, fabrication, and analysis,” Appl. Opt. 38, 6257–6271 (1999).
[CrossRef]

E. Kley, M. Cumme, T. Clausnitzer, B. Schnabel, A. Stich, “Investigation of large area gratings fabricated by ultrafast e-beam writing,” in Advanced Optical Manufacturing and Testing Technology 2000, L. Yang, H. M. Pollicove, Q. Xin, J. C. Wyant, eds., Proc. SPIE4231, 116–125 (2000).
[CrossRef]

Schreiber, T.

J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

A. Liem, J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, “High average power femtosecond fiber CPA system,” in Advanced Solid-State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–132.

Shannon, C.

Shore, B. W.

Shults, E.

Stich, A.

E. Kley, M. Cumme, T. Clausnitzer, B. Schnabel, A. Stich, “Investigation of large area gratings fabricated by ultrafast e-beam writing,” in Advanced Optical Manufacturing and Testing Technology 2000, L. Yang, H. M. Pollicove, Q. Xin, J. C. Wyant, eds., Proc. SPIE4231, 116–125 (2000).
[CrossRef]

Strickland, D.

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Stuart, B. C.

Theobald, W.

Tünnermann, A.

J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

A. Liem, J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, “High average power femtosecond fiber CPA system,” in Advanced Solid-State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–132.

Welsch, E.

Wenke, L.

Zellmer, H.

J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

A. Liem, J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, “High average power femtosecond fiber CPA system,” in Advanced Solid-State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–132.

Zöllner, K.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7, 504–517 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (4)

A. Liem, J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, “High average power femtosecond fiber CPA system,” in Advanced Solid-State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–132.

E. Kley, M. Cumme, T. Clausnitzer, B. Schnabel, A. Stich, “Investigation of large area gratings fabricated by ultrafast e-beam writing,” in Advanced Optical Manufacturing and Testing Technology 2000, L. Yang, H. M. Pollicove, Q. Xin, J. C. Wyant, eds., Proc. SPIE4231, 116–125 (2000).
[CrossRef]

ISO 11254: “Test methods for laser-induced damage threshold of optical surfaces,” Part 2: S-on-1 test (International Organization for Standardization, Geneva, Switzerland, 2001).

DIN, Deutsches Institut fuer Normung e.V., Charakterisierung von Laserstrahlen und Laseroptiken: Normen (Beuth-Verlag, Berlin, 2001), ISSN 0342-801X, pp. 99–138.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Rigorously calculated diffraction efficiency of a binary grating (period d = 800 nm) as a function of the profile parameters.

Fig. 2
Fig. 2

Fabrication tolerances. A diffraction efficiency of more than 0.95 is achieved if the groove depth is within the range from 1.45 to 1.65 μm and the duty cycle is between 0.32 and 0.52.

Fig. 3
Fig. 3

An example of a transmission grating in fused silica after the first etching step. The groove depth is 1 μm and the duty cycle is 0.35. The grating was fabricated by electron-beam writing and ion-beam etching (scanning electron micrographs: left-hand side, cross section; right-hand side, top view).

Fig. 4
Fig. 4

Spectral dependence of the diffraction efficiency of the -1st transmitted order.

Fig. 5
Fig. 5

Spectral maximum of efficiency shifts to smaller wavelengths (arrow) if either the (a) duty cycle or (b) groove depth is decreased.

Fig. 6
Fig. 6

Schematic setup of the high average power fiber CPA system: OI, optical isolator; LD, laser diode.

Fig. 7
Fig. 7

Slope efficiency of the ytterbium-doped fiber power amplifier.

Fig. 8
Fig. 8

Measured autocorrelation trace of the high-power femtosecond pulses.

Metrics