Abstract

Transmission spectra of bilayers of a strongly absorbing dye molecule on thin semitransparent metallic films show a pronounced variation of the shape as a function of the thickness of the metal film. The shape changes with increasing thickness of the metal film from the form of an absorption spectrum as determined by the imaginary part of the dielectric function to an antisymmetric shape characteristic of the dispersion of the real part of the dielectric function in the vicinity of a resonance. These different spectra shapes were exploited to derive the complex dielectric function of a dye layer from transmission spectra of the layer on metal films of a different thickness. This method proved to be a simple alternative to determination of the dielectric function of a thin film of a dye by spectroscopic ellipsometry.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Fritz, J. Hahn, H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
    [CrossRef]
  2. G. Baldini, L. Rigaldi, “Ultraviolet optical constants of thin films determined by reflectance measurements,” J. Opt. Soc. Am. 60, 495–498 (1970).
    [CrossRef]
  3. W. N. Hansen, “Optical characterization of thin films: theory,” J. Opt. Soc. Am. 63, 793–802 (1973).
    [CrossRef]
  4. F. Forstmann, R. R. Gerhardts, “Metal optics near the plasma frequency,” in Festkörperprobleme XXII, Advances in Solid State Physics, P. Grosse, ed. (Vieweg, Braunschweig, Germany, 1982), pp. 291–323.
  5. D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. Tuttle Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, T. F. Thonn, “Multiple determination of the optical constants of thin-film coating materials,” Appl. Opt. 23, 3571–3596 (1984) and references therein.
    [CrossRef] [PubMed]
  6. E. G. Bortchagovsky, U. C. Fischer, “On the modulation of optical transmission spectra of thin dye layers by a supporting medium,” J. Chem. Phys. 117, 5384–5392 (2002).
    [CrossRef]
  7. E. G. Bortchagovsky, O. M. Getsko, “Comparison of ellipsometric methods for separate determination of thickness and optical constants of thin films,” in Lightmetry: Metrology, Spectroscopy, and Testing Techniques Using Light, M. Pluta, ed., Proc. SPIE4517, 126–133 (2001).
    [CrossRef]
  8. I. Ohlidal, K. Navratil, E. Schmidt, “Simple method for the complete optical analysis of very thick and weakly absorbing films,” Appl. Phys. A 29, 157–162 (1982).
    [CrossRef]
  9. H. Fukumoto, Y. Yonezawa, “Layer-by-layer self-assembly of polyelectrolyte and water soluble cyanine dye,” Thin Solid Films 327–329, 748–751 (1998).
    [CrossRef]
  10. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277, 1232–1237 (1997).
    [CrossRef]
  11. J. Heimel, U. C. Fischer, H. Fuchs, “SNOM/STM using a tetrahedral tip and sensitive current-to-voltage converter,” J. Microsc. (Oxford) 202, 53–59 (2001).
    [CrossRef]
  12. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  13. U. C. Fischer, E. G. Bortchagovsky, J. Heimel, R. T. Hanke, “Increased transmission of a thin gold film by adsorbed layers of dye molecules,” Appl. Phys. Lett. 80, 3715–3717 (2002).
    [CrossRef]
  14. H. Arwin, D. E. Aspnes, “Determination of optical properties of thin organic films by spectroellipsometry,” Thin Solid Films 138, 195–207 (1986).
    [CrossRef]
  15. F. Abeles, T. Lopes-Rios, “Ellipsometry of metallic films and surfaces with nonlocal effects,” Surf. Sci. 96, 32–40 (1980).
    [CrossRef]
  16. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 11, 431–441 (1963).
    [CrossRef]
  17. P. Junod, H. Hediger, B. Kilchoer, R. Steiger, “Evaporated layers of silver-halides for the study of primary processes of photography,” Photogr. Sci. Eng. 23, 266–283 (1979).
  18. W. J. Plieth, K. Naegele, “Kramers–Kronig analysis for the determination of the optical constants of thin surface films,” Surf. Sci. 50, 53–76 (1975).
    [CrossRef]

2002 (2)

E. G. Bortchagovsky, U. C. Fischer, “On the modulation of optical transmission spectra of thin dye layers by a supporting medium,” J. Chem. Phys. 117, 5384–5392 (2002).
[CrossRef]

U. C. Fischer, E. G. Bortchagovsky, J. Heimel, R. T. Hanke, “Increased transmission of a thin gold film by adsorbed layers of dye molecules,” Appl. Phys. Lett. 80, 3715–3717 (2002).
[CrossRef]

2001 (1)

J. Heimel, U. C. Fischer, H. Fuchs, “SNOM/STM using a tetrahedral tip and sensitive current-to-voltage converter,” J. Microsc. (Oxford) 202, 53–59 (2001).
[CrossRef]

1998 (1)

H. Fukumoto, Y. Yonezawa, “Layer-by-layer self-assembly of polyelectrolyte and water soluble cyanine dye,” Thin Solid Films 327–329, 748–751 (1998).
[CrossRef]

1997 (1)

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277, 1232–1237 (1997).
[CrossRef]

1989 (1)

T. Fritz, J. Hahn, H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
[CrossRef]

1986 (1)

H. Arwin, D. E. Aspnes, “Determination of optical properties of thin organic films by spectroellipsometry,” Thin Solid Films 138, 195–207 (1986).
[CrossRef]

1984 (1)

1982 (1)

I. Ohlidal, K. Navratil, E. Schmidt, “Simple method for the complete optical analysis of very thick and weakly absorbing films,” Appl. Phys. A 29, 157–162 (1982).
[CrossRef]

1980 (1)

F. Abeles, T. Lopes-Rios, “Ellipsometry of metallic films and surfaces with nonlocal effects,” Surf. Sci. 96, 32–40 (1980).
[CrossRef]

1979 (1)

P. Junod, H. Hediger, B. Kilchoer, R. Steiger, “Evaporated layers of silver-halides for the study of primary processes of photography,” Photogr. Sci. Eng. 23, 266–283 (1979).

1975 (1)

W. J. Plieth, K. Naegele, “Kramers–Kronig analysis for the determination of the optical constants of thin surface films,” Surf. Sci. 50, 53–76 (1975).
[CrossRef]

1973 (1)

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1970 (1)

1963 (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Abeles, F.

F. Abeles, T. Lopes-Rios, “Ellipsometry of metallic films and surfaces with nonlocal effects,” Surf. Sci. 96, 32–40 (1980).
[CrossRef]

Arndt, D. P.

Arwin, H.

H. Arwin, D. E. Aspnes, “Determination of optical properties of thin organic films by spectroellipsometry,” Thin Solid Films 138, 195–207 (1986).
[CrossRef]

Aspnes, D. E.

H. Arwin, D. E. Aspnes, “Determination of optical properties of thin organic films by spectroellipsometry,” Thin Solid Films 138, 195–207 (1986).
[CrossRef]

Azzam, R. M. A.

Baldini, G.

Bennett, J. M.

Borgogno, J. P.

Bortchagovsky, E. G.

E. G. Bortchagovsky, U. C. Fischer, “On the modulation of optical transmission spectra of thin dye layers by a supporting medium,” J. Chem. Phys. 117, 5384–5392 (2002).
[CrossRef]

U. C. Fischer, E. G. Bortchagovsky, J. Heimel, R. T. Hanke, “Increased transmission of a thin gold film by adsorbed layers of dye molecules,” Appl. Phys. Lett. 80, 3715–3717 (2002).
[CrossRef]

E. G. Bortchagovsky, O. M. Getsko, “Comparison of ellipsometric methods for separate determination of thickness and optical constants of thin films,” in Lightmetry: Metrology, Spectroscopy, and Testing Techniques Using Light, M. Pluta, ed., Proc. SPIE4517, 126–133 (2001).
[CrossRef]

Böttcher, H.

T. Fritz, J. Hahn, H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
[CrossRef]

Carniglia, C. K.

Case, W. E.

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Decher, G.

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277, 1232–1237 (1997).
[CrossRef]

Dobrowolski, J. A.

Fischer, U. C.

E. G. Bortchagovsky, U. C. Fischer, “On the modulation of optical transmission spectra of thin dye layers by a supporting medium,” J. Chem. Phys. 117, 5384–5392 (2002).
[CrossRef]

U. C. Fischer, E. G. Bortchagovsky, J. Heimel, R. T. Hanke, “Increased transmission of a thin gold film by adsorbed layers of dye molecules,” Appl. Phys. Lett. 80, 3715–3717 (2002).
[CrossRef]

J. Heimel, U. C. Fischer, H. Fuchs, “SNOM/STM using a tetrahedral tip and sensitive current-to-voltage converter,” J. Microsc. (Oxford) 202, 53–59 (2001).
[CrossRef]

Forstmann, F.

F. Forstmann, R. R. Gerhardts, “Metal optics near the plasma frequency,” in Festkörperprobleme XXII, Advances in Solid State Physics, P. Grosse, ed. (Vieweg, Braunschweig, Germany, 1982), pp. 291–323.

Fritz, T.

T. Fritz, J. Hahn, H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
[CrossRef]

Fuchs, H.

J. Heimel, U. C. Fischer, H. Fuchs, “SNOM/STM using a tetrahedral tip and sensitive current-to-voltage converter,” J. Microsc. (Oxford) 202, 53–59 (2001).
[CrossRef]

Fukumoto, H.

H. Fukumoto, Y. Yonezawa, “Layer-by-layer self-assembly of polyelectrolyte and water soluble cyanine dye,” Thin Solid Films 327–329, 748–751 (1998).
[CrossRef]

Gerhardts, R. R.

F. Forstmann, R. R. Gerhardts, “Metal optics near the plasma frequency,” in Festkörperprobleme XXII, Advances in Solid State Physics, P. Grosse, ed. (Vieweg, Braunschweig, Germany, 1982), pp. 291–323.

Getsko, O. M.

E. G. Bortchagovsky, O. M. Getsko, “Comparison of ellipsometric methods for separate determination of thickness and optical constants of thin films,” in Lightmetry: Metrology, Spectroscopy, and Testing Techniques Using Light, M. Pluta, ed., Proc. SPIE4517, 126–133 (2001).
[CrossRef]

Gibson, U. J.

Hahn, J.

T. Fritz, J. Hahn, H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
[CrossRef]

Hanke, R. T.

U. C. Fischer, E. G. Bortchagovsky, J. Heimel, R. T. Hanke, “Increased transmission of a thin gold film by adsorbed layers of dye molecules,” Appl. Phys. Lett. 80, 3715–3717 (2002).
[CrossRef]

Hansen, W. N.

Hediger, H.

P. Junod, H. Hediger, B. Kilchoer, R. Steiger, “Evaporated layers of silver-halides for the study of primary processes of photography,” Photogr. Sci. Eng. 23, 266–283 (1979).

Heimel, J.

U. C. Fischer, E. G. Bortchagovsky, J. Heimel, R. T. Hanke, “Increased transmission of a thin gold film by adsorbed layers of dye molecules,” Appl. Phys. Lett. 80, 3715–3717 (2002).
[CrossRef]

J. Heimel, U. C. Fischer, H. Fuchs, “SNOM/STM using a tetrahedral tip and sensitive current-to-voltage converter,” J. Microsc. (Oxford) 202, 53–59 (2001).
[CrossRef]

Ho, F. C.

Hodgkin, V. A.

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Junod, P.

P. Junod, H. Hediger, B. Kilchoer, R. Steiger, “Evaporated layers of silver-halides for the study of primary processes of photography,” Photogr. Sci. Eng. 23, 266–283 (1979).

Kilchoer, B.

P. Junod, H. Hediger, B. Kilchoer, R. Steiger, “Evaporated layers of silver-halides for the study of primary processes of photography,” Photogr. Sci. Eng. 23, 266–283 (1979).

Klapp, W. P.

Lopes-Rios, T.

F. Abeles, T. Lopes-Rios, “Ellipsometry of metallic films and surfaces with nonlocal effects,” Surf. Sci. 96, 32–40 (1980).
[CrossRef]

Macleod, H. A.

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Naegele, K.

W. J. Plieth, K. Naegele, “Kramers–Kronig analysis for the determination of the optical constants of thin surface films,” Surf. Sci. 50, 53–76 (1975).
[CrossRef]

Navratil, K.

I. Ohlidal, K. Navratil, E. Schmidt, “Simple method for the complete optical analysis of very thick and weakly absorbing films,” Appl. Phys. A 29, 157–162 (1982).
[CrossRef]

Ohlidal, I.

I. Ohlidal, K. Navratil, E. Schmidt, “Simple method for the complete optical analysis of very thick and weakly absorbing films,” Appl. Phys. A 29, 157–162 (1982).
[CrossRef]

Pelletier, E.

Plieth, W. J.

W. J. Plieth, K. Naegele, “Kramers–Kronig analysis for the determination of the optical constants of thin surface films,” Surf. Sci. 50, 53–76 (1975).
[CrossRef]

Purvis, M. K.

Quinn, D. M.

Rigaldi, L.

Schmidt, E.

I. Ohlidal, K. Navratil, E. Schmidt, “Simple method for the complete optical analysis of very thick and weakly absorbing films,” Appl. Phys. A 29, 157–162 (1982).
[CrossRef]

Steiger, R.

P. Junod, H. Hediger, B. Kilchoer, R. Steiger, “Evaporated layers of silver-halides for the study of primary processes of photography,” Photogr. Sci. Eng. 23, 266–283 (1979).

Strome, D. H.

Swenson, R.

Temple, P. A.

Thonn, T. F.

Tuttle Hart, T.

Yonezawa, Y.

H. Fukumoto, Y. Yonezawa, “Layer-by-layer self-assembly of polyelectrolyte and water soluble cyanine dye,” Thin Solid Films 327–329, 748–751 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

I. Ohlidal, K. Navratil, E. Schmidt, “Simple method for the complete optical analysis of very thick and weakly absorbing films,” Appl. Phys. A 29, 157–162 (1982).
[CrossRef]

Appl. Phys. Lett. (1)

U. C. Fischer, E. G. Bortchagovsky, J. Heimel, R. T. Hanke, “Increased transmission of a thin gold film by adsorbed layers of dye molecules,” Appl. Phys. Lett. 80, 3715–3717 (2002).
[CrossRef]

J. Chem. Phys. (1)

E. G. Bortchagovsky, U. C. Fischer, “On the modulation of optical transmission spectra of thin dye layers by a supporting medium,” J. Chem. Phys. 117, 5384–5392 (2002).
[CrossRef]

J. Microsc. (Oxford) (1)

J. Heimel, U. C. Fischer, H. Fuchs, “SNOM/STM using a tetrahedral tip and sensitive current-to-voltage converter,” J. Microsc. (Oxford) 202, 53–59 (2001).
[CrossRef]

J. Opt. Soc. Am. (2)

Photogr. Sci. Eng. (1)

P. Junod, H. Hediger, B. Kilchoer, R. Steiger, “Evaporated layers of silver-halides for the study of primary processes of photography,” Photogr. Sci. Eng. 23, 266–283 (1979).

Phys. Rev. B (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Science (1)

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277, 1232–1237 (1997).
[CrossRef]

SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Surf. Sci. (2)

F. Abeles, T. Lopes-Rios, “Ellipsometry of metallic films and surfaces with nonlocal effects,” Surf. Sci. 96, 32–40 (1980).
[CrossRef]

W. J. Plieth, K. Naegele, “Kramers–Kronig analysis for the determination of the optical constants of thin surface films,” Surf. Sci. 50, 53–76 (1975).
[CrossRef]

Thin Solid Films (3)

T. Fritz, J. Hahn, H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
[CrossRef]

H. Arwin, D. E. Aspnes, “Determination of optical properties of thin organic films by spectroellipsometry,” Thin Solid Films 138, 195–207 (1986).
[CrossRef]

H. Fukumoto, Y. Yonezawa, “Layer-by-layer self-assembly of polyelectrolyte and water soluble cyanine dye,” Thin Solid Films 327–329, 748–751 (1998).
[CrossRef]

Other (2)

E. G. Bortchagovsky, O. M. Getsko, “Comparison of ellipsometric methods for separate determination of thickness and optical constants of thin films,” in Lightmetry: Metrology, Spectroscopy, and Testing Techniques Using Light, M. Pluta, ed., Proc. SPIE4517, 126–133 (2001).
[CrossRef]

F. Forstmann, R. R. Gerhardts, “Metal optics near the plasma frequency,” in Festkörperprobleme XXII, Advances in Solid State Physics, P. Grosse, ed. (Vieweg, Braunschweig, Germany, 1982), pp. 291–323.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Normalized transmission spectra of Agfa II bilayer on gold films with different thicknesses and on glass.

Fig. 2
Fig. 2

Calculated dielectric function of Agfa II dye deposited on gold.

Fig. 3
Fig. 3

Calculated dielectric function of Agfa II dye deposited on glass.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

|Tt|2=|T|21+2π dλ10×fi1+Rr+fr-0Ri.

Metrics