Abstract

Apertureless scanning near-field optical microscopy has been used to image fluorescent latex spheres with a resolution of a few tens of nanometers and good signal-to-noise ratio. The near-field fluorescence images reveal optical interference with several highly contrasted fringes located around the spheres. The origin of the interference is discussed in detail, and models are used to explain their formation. Spatial coherence is also discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [CrossRef]
  2. E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
    [CrossRef] [PubMed]
  3. R. T. Doyle, M. J. Szulzcewski, P. G. Haydon, “Extraction of near-field fluorescence from composite signals to provide high resolution images of glial cells,” Biophys. J. 80, 2477–2482 (2001).
    [CrossRef] [PubMed]
  4. F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
    [CrossRef] [PubMed]
  5. P. Gleyzes, A. C. Boccara, R. Bachelot, “Near field optical microscopy using a metallic vibrating tip,” Ultramicroscopy 57, 318–322 (1995).
    [CrossRef]
  6. B. Knoll, F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
    [CrossRef]
  7. T. J. Yang, G. A. Lessard, S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76, 378–380 (1999).
    [CrossRef]
  8. E. J. Sanchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
    [CrossRef]
  9. H. F. Hamann, A. Gallagher, D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1955 (2000).
    [CrossRef]
  10. P. M. Adam, S. Benrezzak, J. L. Bijeon, P. Royer, S. Guy, B. Jacquier, P. Moretti, R. M. Montereali, M. Piccinini, F. Menchini, F. Somma, C. Seassal, H. Rigneault, “Fluorescence imaging of submicrometric lattices of colour centres in LiF by an apertureless scanning near-field optical microscope,” Opt. Express 9, 353–359 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  11. H. F. Hamann, M. Kuno, A. Gallagher, D. J. Nesbitt, “Molecular fluorescence in the vicinity of a nanoscopic probe,” J. Chem. Phys. 114, 8596–8609 (2001).
    [CrossRef]
  12. R. Bachelot, P. Gleyzes, A. C. Boccara, “Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip,” Appl. Opt. 36, 2160–2169 (1997).
    [CrossRef] [PubMed]
  13. S. Grésillon, H. Cory, J. C. Rivoal, A. C. Boccara, “Transmission-mode apertureless near-field microscope: optical and magneto-optical studies,” J. Opt. A Pure Appl. Opt. 1, 178–184 (1999).
    [CrossRef]

2001 (3)

R. T. Doyle, M. J. Szulzcewski, P. G. Haydon, “Extraction of near-field fluorescence from composite signals to provide high resolution images of glial cells,” Biophys. J. 80, 2477–2482 (2001).
[CrossRef] [PubMed]

H. F. Hamann, M. Kuno, A. Gallagher, D. J. Nesbitt, “Molecular fluorescence in the vicinity of a nanoscopic probe,” J. Chem. Phys. 114, 8596–8609 (2001).
[CrossRef]

P. M. Adam, S. Benrezzak, J. L. Bijeon, P. Royer, S. Guy, B. Jacquier, P. Moretti, R. M. Montereali, M. Piccinini, F. Menchini, F. Somma, C. Seassal, H. Rigneault, “Fluorescence imaging of submicrometric lattices of colour centres in LiF by an apertureless scanning near-field optical microscope,” Opt. Express 9, 353–359 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

2000 (1)

H. F. Hamann, A. Gallagher, D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1955 (2000).
[CrossRef]

1999 (4)

S. Grésillon, H. Cory, J. C. Rivoal, A. C. Boccara, “Transmission-mode apertureless near-field microscope: optical and magneto-optical studies,” J. Opt. A Pure Appl. Opt. 1, 178–184 (1999).
[CrossRef]

B. Knoll, F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[CrossRef]

T. J. Yang, G. A. Lessard, S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76, 378–380 (1999).
[CrossRef]

E. J. Sanchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

1997 (1)

1995 (2)

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

P. Gleyzes, A. C. Boccara, R. Bachelot, “Near field optical microscopy using a metallic vibrating tip,” Ultramicroscopy 57, 318–322 (1995).
[CrossRef]

1993 (1)

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

1984 (1)

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Adam, P. M.

Bachelot, R.

R. Bachelot, P. Gleyzes, A. C. Boccara, “Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip,” Appl. Opt. 36, 2160–2169 (1997).
[CrossRef] [PubMed]

P. Gleyzes, A. C. Boccara, R. Bachelot, “Near field optical microscopy using a metallic vibrating tip,” Ultramicroscopy 57, 318–322 (1995).
[CrossRef]

Benrezzak, S.

Betzig, E.

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

Bijeon, J. L.

Boccara, A. C.

S. Grésillon, H. Cory, J. C. Rivoal, A. C. Boccara, “Transmission-mode apertureless near-field microscope: optical and magneto-optical studies,” J. Opt. A Pure Appl. Opt. 1, 178–184 (1999).
[CrossRef]

R. Bachelot, P. Gleyzes, A. C. Boccara, “Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip,” Appl. Opt. 36, 2160–2169 (1997).
[CrossRef] [PubMed]

P. Gleyzes, A. C. Boccara, R. Bachelot, “Near field optical microscopy using a metallic vibrating tip,” Ultramicroscopy 57, 318–322 (1995).
[CrossRef]

Chichester, R. J.

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

Cory, H.

S. Grésillon, H. Cory, J. C. Rivoal, A. C. Boccara, “Transmission-mode apertureless near-field microscope: optical and magneto-optical studies,” J. Opt. A Pure Appl. Opt. 1, 178–184 (1999).
[CrossRef]

Denk, W.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Doyle, R. T.

R. T. Doyle, M. J. Szulzcewski, P. G. Haydon, “Extraction of near-field fluorescence from composite signals to provide high resolution images of glial cells,” Biophys. J. 80, 2477–2482 (2001).
[CrossRef] [PubMed]

Gallagher, A.

H. F. Hamann, M. Kuno, A. Gallagher, D. J. Nesbitt, “Molecular fluorescence in the vicinity of a nanoscopic probe,” J. Chem. Phys. 114, 8596–8609 (2001).
[CrossRef]

H. F. Hamann, A. Gallagher, D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1955 (2000).
[CrossRef]

Gleyzes, P.

R. Bachelot, P. Gleyzes, A. C. Boccara, “Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip,” Appl. Opt. 36, 2160–2169 (1997).
[CrossRef] [PubMed]

P. Gleyzes, A. C. Boccara, R. Bachelot, “Near field optical microscopy using a metallic vibrating tip,” Ultramicroscopy 57, 318–322 (1995).
[CrossRef]

Grésillon, S.

S. Grésillon, H. Cory, J. C. Rivoal, A. C. Boccara, “Transmission-mode apertureless near-field microscope: optical and magneto-optical studies,” J. Opt. A Pure Appl. Opt. 1, 178–184 (1999).
[CrossRef]

Guy, S.

Hamann, H. F.

H. F. Hamann, M. Kuno, A. Gallagher, D. J. Nesbitt, “Molecular fluorescence in the vicinity of a nanoscopic probe,” J. Chem. Phys. 114, 8596–8609 (2001).
[CrossRef]

H. F. Hamann, A. Gallagher, D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1955 (2000).
[CrossRef]

Haydon, P. G.

R. T. Doyle, M. J. Szulzcewski, P. G. Haydon, “Extraction of near-field fluorescence from composite signals to provide high resolution images of glial cells,” Biophys. J. 80, 2477–2482 (2001).
[CrossRef] [PubMed]

Jacquier, B.

Keilmann, F.

B. Knoll, F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[CrossRef]

Knoll, B.

B. Knoll, F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[CrossRef]

Kuno, M.

H. F. Hamann, M. Kuno, A. Gallagher, D. J. Nesbitt, “Molecular fluorescence in the vicinity of a nanoscopic probe,” J. Chem. Phys. 114, 8596–8609 (2001).
[CrossRef]

Lanz, M.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Lessard, G. A.

T. J. Yang, G. A. Lessard, S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76, 378–380 (1999).
[CrossRef]

Martin, Y.

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Menchini, F.

Montereali, R. M.

Moretti, P.

Nesbitt, D. J.

H. F. Hamann, M. Kuno, A. Gallagher, D. J. Nesbitt, “Molecular fluorescence in the vicinity of a nanoscopic probe,” J. Chem. Phys. 114, 8596–8609 (2001).
[CrossRef]

H. F. Hamann, A. Gallagher, D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1955 (2000).
[CrossRef]

Novotny, L.

E. J. Sanchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Piccinini, M.

Pohl, D. W.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Quake, S. R.

T. J. Yang, G. A. Lessard, S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76, 378–380 (1999).
[CrossRef]

Rigneault, H.

Rivoal, J. C.

S. Grésillon, H. Cory, J. C. Rivoal, A. C. Boccara, “Transmission-mode apertureless near-field microscope: optical and magneto-optical studies,” J. Opt. A Pure Appl. Opt. 1, 178–184 (1999).
[CrossRef]

Royer, P.

Sanchez, E. J.

E. J. Sanchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Seassal, C.

Somma, F.

Szulzcewski, M. J.

R. T. Doyle, M. J. Szulzcewski, P. G. Haydon, “Extraction of near-field fluorescence from composite signals to provide high resolution images of glial cells,” Biophys. J. 80, 2477–2482 (2001).
[CrossRef] [PubMed]

Wickramasinghe, H. K.

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Xie, X. S.

E. J. Sanchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Yang, T. J.

T. J. Yang, G. A. Lessard, S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76, 378–380 (1999).
[CrossRef]

Zenhausern, F.

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

T. J. Yang, G. A. Lessard, S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76, 378–380 (1999).
[CrossRef]

H. F. Hamann, A. Gallagher, D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1955 (2000).
[CrossRef]

Biophys. J. (1)

R. T. Doyle, M. J. Szulzcewski, P. G. Haydon, “Extraction of near-field fluorescence from composite signals to provide high resolution images of glial cells,” Biophys. J. 80, 2477–2482 (2001).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

H. F. Hamann, M. Kuno, A. Gallagher, D. J. Nesbitt, “Molecular fluorescence in the vicinity of a nanoscopic probe,” J. Chem. Phys. 114, 8596–8609 (2001).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

S. Grésillon, H. Cory, J. C. Rivoal, A. C. Boccara, “Transmission-mode apertureless near-field microscope: optical and magneto-optical studies,” J. Opt. A Pure Appl. Opt. 1, 178–184 (1999).
[CrossRef]

Nature (1)

B. Knoll, F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

E. J. Sanchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Science (2)

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

Ultramicroscopy (1)

P. Gleyzes, A. C. Boccara, R. Bachelot, “Near field optical microscopy using a metallic vibrating tip,” Ultramicroscopy 57, 318–322 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup. Excitation can be achieved in both transmission and reflection modes. The tip oscillates above the sample and scatters the optical near field. A fluorescence SNOM signal is collected by a high-numerical-aperture (NA) objective and spectrally filtered before detection.

Fig. 2
Fig. 2

(a) Topographic and (c) fluorescence near-field images of 200-nm fluorescent spheres and corresponding (b) AFM and (d) SNOM line scans. Line scans were taken along the directions of arrows.

Fig. 3
Fig. 3

Near-field fluorescence images of 200-nm fluorescent spheres: (a) amplitude SNOM image and (b) SNOM image combining amplitude and phase signals.

Fig. 4
Fig. 4

(a) Far-field fluorescence image, (b) topography, and (c) near-field fluorescence image of 500-nm spheres. We obtained the near-field fluorescence image by combining the amplitude and the phase signals.

Fig. 5
Fig. 5

(a) Topography, (b) near-field fluorescence image, and (c) corresponding near-field line scan of 1-μm spheres. We obtained the near-field fluorescence image by combining the amplitude and the phase signals. The line scan was made along the white solid line.

Fig. 6
Fig. 6

(a) Sketch of the model used for excitation-light interference, (b) description of the signal scattered by the tip, (c) comparison of the model and the experiment.

Fig. 7
Fig. 7

(a) Sketch of the model used for emission light interference and the interference pattern on the objective aperture. (b) Comparison of model and experiment.

Fig. 8
Fig. 8

Spatial selection of the molecules by the excitation spot when the tip is not centered on the sphere.

Fig. 9
Fig. 9

Optical effect of the glue layer in 500-nm and 1-μm sphere samples: by adapting the refractive indices, the glue layer favors fluorescence propagation of the molecules at the bottom of the sphere within the glue layer itself and in the slide.

Fig. 10
Fig. 10

Fluorescence SNOM images on 1-μm spheres for three tip-to-sample distances: (a) tip in contact with the spheres, (b) tip 600 nm above the spheres, (c) tip 1200 nm above the spheres.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

φd, htip=2πλexchtip+htip2+d21/2,
Id, htip=A0A0*G21+1G2+2Gcos φ.
ΔΦ=2πλPQ-PQ,
ΔΦ=2πλXQ-d2+YQ2+R21/2-d2+htip21/2-XQ2+YQ2+R-htip21/2,
SSNOM=apert Itip upQ-apert Itip downQ.

Metrics