Abstract

Accurate and dynamic control of the operating point of an interferometric optical sensor to produce the highest sensitivity is crucial in the demodulation of interferometric optical sensors to compensate for manufacturing errors and environmental perturbations. A grating-assisted operating-point tuning system has been designed that uses a diffraction grating and feedback control, functions as a tunable-bandpass optical filter, and can be used as an effective demodulation subsystem in sensor systems based on optical interferometers that use broadband light sources. This demodulation method has no signal-detection bandwidth limit, a high tuning speed, a large tunable range, increased interference fringe contrast, and the potential for absolute optical-path-difference measurement. The achieved 40-nm tuning range, which is limited by the available source spectrum width, 400-nm/s tuning speed, and a step resolution of 0.4 nm, is sufficient for most practical measurements. A significant improvement in signal-to-noise ratio in a fiber Fabry-Perot acoustic-wave sensor system proved that the expected fringe contrast and sensitivity increase.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor application,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1620 (1982).
    [CrossRef]
  2. C. E. Lee, H. F. Taylor, “Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
    [CrossRef]
  3. R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
    [CrossRef] [PubMed]
  4. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
    [CrossRef]
  5. N. Furstenau, M. Schmidt, H. Horack, W. Goetze, W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
    [CrossRef]
  6. W. Pulliam, P. Russler, R. Mlcak, K. Murphy, C. Kozikowski, “Micromachined, SiC fiber optic pressure sensors for high temperature aerospace applications,” in Industrial Sensing Systems, A. Wang, E. Udd, eds., Proc. SPIE4202, 21–30 (2000).
    [CrossRef]
  7. Y. Kim, D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer,” IEEE Photon. Technol. Lett. 7, 1471–1473 (1995).
    [CrossRef]
  8. J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–306 (1990).
    [CrossRef] [PubMed]
  9. J. F. Dorighi, S. Krishnaswamy, J. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995).
    [CrossRef]
  10. K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, “Detection of acoustic emission location using optical fiber sensors,” in Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation, J. S. Sirkis, ed., Proc. SPIE2191, 282–290 (1994).
    [CrossRef]
  11. B. Yu, D. W. Kim, J. Deng, H. Xiao, A. Wang, “Fiber Fabry-Perot sensors for partial discharge detection in power transformers,” Appl. Opt. 42, 3241–3250 (2003).
    [CrossRef] [PubMed]
  12. K. Murphy, M. F. Gunther, A. M. Vengsakar, R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
    [CrossRef] [PubMed]
  13. C. Belleville, G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18, 78–80 (1993).
    [CrossRef] [PubMed]
  14. A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-optic interferometric sensor utilising low coherence length sources: resolution enhencement,” Electron. Lett. 24, 472–474 (1988).
    [CrossRef]
  15. M. Schmidt, N. Fürstenau, “Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24, 599–601 (1999).
    [CrossRef]
  16. S. A. Egorov, A. N. Mamaev, I. G. Likhachiev, Y. A. Ershov, A. S. Voloshin, E. Nir, “Advanced signal processing method for interferometric fiber-optic sensors with straightforward spectral detection,” in Sensors and Controls for Advanced Manufacturing, B. O. Nnaji, A. Wang, eds., Proc. SPIE3201, 44–48 (1998).
    [CrossRef]
  17. B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

2003 (1)

2001 (1)

1999 (1)

1997 (1)

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

1995 (2)

Y. Kim, D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer,” IEEE Photon. Technol. Lett. 7, 1471–1473 (1995).
[CrossRef]

J. F. Dorighi, S. Krishnaswamy, J. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995).
[CrossRef]

1993 (1)

1991 (3)

K. Murphy, M. F. Gunther, A. M. Vengsakar, R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
[CrossRef] [PubMed]

C. E. Lee, H. F. Taylor, “Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

1990 (1)

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–306 (1990).
[CrossRef] [PubMed]

1988 (1)

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-optic interferometric sensor utilising low coherence length sources: resolution enhencement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

1982 (1)

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor application,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1620 (1982).
[CrossRef]

Achenbach, J.

J. F. Dorighi, S. Krishnaswamy, J. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995).
[CrossRef]

Afromowitz, M. A.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

Alcoz, J. J.

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–306 (1990).
[CrossRef] [PubMed]

Belleville, C.

Claus, R. O.

K. Murphy, M. F. Gunther, A. M. Vengsakar, R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
[CrossRef] [PubMed]

K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, “Detection of acoustic emission location using optical fiber sensors,” in Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation, J. S. Sirkis, ed., Proc. SPIE2191, 282–290 (1994).
[CrossRef]

Deng, J.

Dorighi, J. F.

J. F. Dorighi, S. Krishnaswamy, J. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995).
[CrossRef]

Duan, Y. H.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

Duplain, G.

Egorov, S. A.

S. A. Egorov, A. N. Mamaev, I. G. Likhachiev, Y. A. Ershov, A. S. Voloshin, E. Nir, “Advanced signal processing method for interferometric fiber-optic sensors with straightforward spectral detection,” in Sensors and Controls for Advanced Manufacturing, B. O. Nnaji, A. Wang, eds., Proc. SPIE3201, 44–48 (1998).
[CrossRef]

Ershov, Y. A.

S. A. Egorov, A. N. Mamaev, I. G. Likhachiev, Y. A. Ershov, A. S. Voloshin, E. Nir, “Advanced signal processing method for interferometric fiber-optic sensors with straightforward spectral detection,” in Sensors and Controls for Advanced Manufacturing, B. O. Nnaji, A. Wang, eds., Proc. SPIE3201, 44–48 (1998).
[CrossRef]

Farahi, F.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-optic interferometric sensor utilising low coherence length sources: resolution enhencement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Furstenau, N.

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

Fürstenau, N.

Gerges, A. S.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-optic interferometric sensor utilising low coherence length sources: resolution enhencement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Goetze, W.

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

Gunther, M. F.

K. Murphy, M. F. Gunther, A. M. Vengsakar, R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
[CrossRef] [PubMed]

K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, “Detection of acoustic emission location using optical fiber sensors,” in Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation, J. S. Sirkis, ed., Proc. SPIE2191, 282–290 (1994).
[CrossRef]

Hartl, J. C.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

Horack, H.

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

Huang, Z. Y.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

Huo, W.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

Itoh, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor application,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1620 (1982).
[CrossRef]

Jackson, D. A.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-optic interferometric sensor utilising low coherence length sources: resolution enhencement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Jones, J. D. C.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-optic interferometric sensor utilising low coherence length sources: resolution enhencement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Kim, D. W.

Kim, Y.

Y. Kim, D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer,” IEEE Photon. Technol. Lett. 7, 1471–1473 (1995).
[CrossRef]

Kozikowski, C.

W. Pulliam, P. Russler, R. Mlcak, K. Murphy, C. Kozikowski, “Micromachined, SiC fiber optic pressure sensors for high temperature aerospace applications,” in Industrial Sensing Systems, A. Wang, E. Udd, eds., Proc. SPIE4202, 21–30 (2000).
[CrossRef]

Krishnaswamy, S.

J. F. Dorighi, S. Krishnaswamy, J. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995).
[CrossRef]

Kurosawa, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor application,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1620 (1982).
[CrossRef]

Lee, C. E.

C. E. Lee, H. F. Taylor, “Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–306 (1990).
[CrossRef] [PubMed]

Likhachiev, I. G.

S. A. Egorov, A. N. Mamaev, I. G. Likhachiev, Y. A. Ershov, A. S. Voloshin, E. Nir, “Advanced signal processing method for interferometric fiber-optic sensors with straightforward spectral detection,” in Sensors and Controls for Advanced Manufacturing, B. O. Nnaji, A. Wang, eds., Proc. SPIE3201, 44–48 (1998).
[CrossRef]

Mamaev, A. N.

S. A. Egorov, A. N. Mamaev, I. G. Likhachiev, Y. A. Ershov, A. S. Voloshin, E. Nir, “Advanced signal processing method for interferometric fiber-optic sensors with straightforward spectral detection,” in Sensors and Controls for Advanced Manufacturing, B. O. Nnaji, A. Wang, eds., Proc. SPIE3201, 44–48 (1998).
[CrossRef]

May, R. G.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

Mitchell, G. L.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

Mlcak, R.

W. Pulliam, P. Russler, R. Mlcak, K. Murphy, C. Kozikowski, “Micromachined, SiC fiber optic pressure sensors for high temperature aerospace applications,” in Industrial Sensing Systems, A. Wang, E. Udd, eds., Proc. SPIE4202, 21–30 (2000).
[CrossRef]

Murphy, K.

K. Murphy, M. F. Gunther, A. M. Vengsakar, R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
[CrossRef] [PubMed]

W. Pulliam, P. Russler, R. Mlcak, K. Murphy, C. Kozikowski, “Micromachined, SiC fiber optic pressure sensors for high temperature aerospace applications,” in Industrial Sensing Systems, A. Wang, E. Udd, eds., Proc. SPIE4202, 21–30 (2000).
[CrossRef]

Murphy, K. A.

K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, “Detection of acoustic emission location using optical fiber sensors,” in Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation, J. S. Sirkis, ed., Proc. SPIE2191, 282–290 (1994).
[CrossRef]

Neikirk, D. P.

Y. Kim, D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer,” IEEE Photon. Technol. Lett. 7, 1471–1473 (1995).
[CrossRef]

Newson, T. P.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-optic interferometric sensor utilising low coherence length sources: resolution enhencement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Nir, E.

S. A. Egorov, A. N. Mamaev, I. G. Likhachiev, Y. A. Ershov, A. S. Voloshin, E. Nir, “Advanced signal processing method for interferometric fiber-optic sensors with straightforward spectral detection,” in Sensors and Controls for Advanced Manufacturing, B. O. Nnaji, A. Wang, eds., Proc. SPIE3201, 44–48 (1998).
[CrossRef]

Ose, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor application,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1620 (1982).
[CrossRef]

Peng, W.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

Pickrell, G.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

Pulliam, W.

W. Pulliam, P. Russler, R. Mlcak, K. Murphy, C. Kozikowski, “Micromachined, SiC fiber optic pressure sensors for high temperature aerospace applications,” in Industrial Sensing Systems, A. Wang, E. Udd, eds., Proc. SPIE4202, 21–30 (2000).
[CrossRef]

Qi, B.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

Russler, P.

W. Pulliam, P. Russler, R. Mlcak, K. Murphy, C. Kozikowski, “Micromachined, SiC fiber optic pressure sensors for high temperature aerospace applications,” in Industrial Sensing Systems, A. Wang, E. Udd, eds., Proc. SPIE4202, 21–30 (2000).
[CrossRef]

Saaski, E.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

Schmidt, M.

M. Schmidt, N. Fürstenau, “Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24, 599–601 (1999).
[CrossRef]

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

Schmidt, W.

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

Taylor, H. F.

C. E. Lee, H. F. Taylor, “Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–306 (1990).
[CrossRef] [PubMed]

Vengsakar, A. M.

Voloshin, A. S.

S. A. Egorov, A. N. Mamaev, I. G. Likhachiev, Y. A. Ershov, A. S. Voloshin, E. Nir, “Advanced signal processing method for interferometric fiber-optic sensors with straightforward spectral detection,” in Sensors and Controls for Advanced Manufacturing, B. O. Nnaji, A. Wang, eds., Proc. SPIE3201, 44–48 (1998).
[CrossRef]

Wang, A.

B. Yu, D. W. Kim, J. Deng, H. Xiao, A. Wang, “Fiber Fabry-Perot sensors for partial discharge detection in power transformers,” Appl. Opt. 42, 3241–3250 (2003).
[CrossRef] [PubMed]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, “Detection of acoustic emission location using optical fiber sensors,” in Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation, J. S. Sirkis, ed., Proc. SPIE2191, 282–290 (1994).
[CrossRef]

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

Wang, J.

Wang, Z.

Wolthuis, R. A.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

Xiao, H.

Xu, J. C.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

Yoshino, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor application,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1620 (1982).
[CrossRef]

Yu, B.

Zhang, P.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

Zhao, W.

Appl. Opt. (1)

Electron. Lett. (1)

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-optic interferometric sensor utilising low coherence length sources: resolution enhencement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

IEE Proc. Optoelectron. (1)

N. Furstenau, M. Schmidt, H. Horack, W. Goetze, W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Kim, D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer,” IEEE Photon. Technol. Lett. 7, 1471–1473 (1995).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991).
[CrossRef] [PubMed]

IEEE Trans. Microwave Theory Tech. (1)

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor application,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1620 (1982).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–306 (1990).
[CrossRef] [PubMed]

J. F. Dorighi, S. Krishnaswamy, J. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995).
[CrossRef]

J. Lightwave Technol. (2)

C. E. Lee, H. F. Taylor, “Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991).
[CrossRef]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

Opt. Lett. (3)

Other (4)

S. A. Egorov, A. N. Mamaev, I. G. Likhachiev, Y. A. Ershov, A. S. Voloshin, E. Nir, “Advanced signal processing method for interferometric fiber-optic sensors with straightforward spectral detection,” in Sensors and Controls for Advanced Manufacturing, B. O. Nnaji, A. Wang, eds., Proc. SPIE3201, 44–48 (1998).
[CrossRef]

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

W. Pulliam, P. Russler, R. Mlcak, K. Murphy, C. Kozikowski, “Micromachined, SiC fiber optic pressure sensors for high temperature aerospace applications,” in Industrial Sensing Systems, A. Wang, E. Udd, eds., Proc. SPIE4202, 21–30 (2000).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, “Detection of acoustic emission location using optical fiber sensors,” in Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation, J. S. Sirkis, ed., Proc. SPIE2191, 282–290 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Theoretical calculation of the wavelength dependence of operation points. R, reflectivity.

Fig. 2
Fig. 2

Schematic diagram of a FFPI sensor system based on GA-OPT.

Fig. 3
Fig. 3

Wavelength dependence of the diffraction angle and GA-OPT bandwidth (Δλ).

Fig. 4
Fig. 4

Top view of GA-OPT.

Fig. 5
Fig. 5

Spectra received by the detector at several grating positions and the original spectrum of the SLED.

Fig. 6
Fig. 6

Output of a FFPI sensor: (a) theoretical result and sensor output, (b) normalized sensor outputs at different static pressures.

Fig. 7
Fig. 7

Acoustic wave detection with a diaphragm-based FFPI sensor and GA-OPT: (a) scanning for the operation point, (b) acoustic-wave outputs without (WO) GA-OPT and with GA-OPT but at different operation points.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I=I1+I2+2I1I2 cos ϕ,
ϕ=2πnl/λ
Δϕ=Δϕnl+Δϕλ=2πλ Δnl-2πnlλ2 Δλ=0,
Δλ=λnl Δnl,
sinA+sinB=λ/d,
cosB=fΔλ/Dd,

Metrics