Abstract

We have performed high-resolution N2 coherent anti-Stokes Raman spectroscopy (CARS) measurements using a modeless dye laser (MDL) as the Stokes beam source to determine the effects of a reduction in mode noise on the accuracy and precision of the method. These results are compared with previous research that employed a conventional broadband dye laser (CBDL) as the Stokes beam source. A new spectral-fitting procedure was developed to avoid starting-point bias in the least-squares fitting results, which possibly had altered the previous measurements. Single-shot measurements of pressure were performed in a static-pressure vessel over the range of 0.1–4.0 atm to examine the pressure sensitivity of the technique. The precision of these measurements is a measure of the baseline noise level of the system, which sets the detection limit for flow-field pressure fluctuations. Centerline measurements of pressure and temperature in an underexpanded jet (M j = 1.85) were also used to determine the performance of the technique in a compressible flow field. Our study represents the first known application, to our knowledge, of a MDL CARS system in a low-temperature, low-pressure supersonic environment. Improvements in accuracy for mean single-shot measurements and increased precision were found for pressure vessel conditions above 1.0 atm. For subatmospheric pressure vessel conditions (0.1–1.0 atm) and the underexpanded jet measurements, there was a decrease in accuracy and precision compared with the CBDL results. A comparison with the CBDL study is included, along with a discussion of the MDL system behavior.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sahu, “Numerical computations of supersonic base flow with special emphasis on turbulence modeling,” AIAA J. 32, 1547–1549 (1994).
    [CrossRef]
  2. S. M. Dash, B. E. Pearce, H. S. Pergament, E. S. Fishburne, “Prediction of rocket plume flowfields for infrared signature studies,” J. Spacecr. Rockets 17, 190–199 (1980).
    [CrossRef]
  3. A. Krothapalli, E. Rajkuperan, F. Alvi, L. Lourenco, “Flow field and noise characteristics of a supersonic impinging jet,” J. Fluid Mech. 392, 155–181 (1999).
    [CrossRef]
  4. E. J. Gutmark, K. C. Schadow, K. H. Yu, “Mixing enhancement in supersonic free shear flows,” Annu. Rev. Fluid Mech. 27, 375–417 (1995).
    [CrossRef]
  5. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, St. Leonards, Australia, 1996).
  6. W. M. Tolles, J. W. Nibler, J. R. McDonald, A. B. Harvey, “A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Spectrosc. 31, 253–271 (1977).
    [CrossRef]
  7. L. P. Goss, “CARS instrumentation for combustion applications,” in Instrumentation for Flows with Combustion, A. M. K. P. Taylor, ed. (Academic, London, 1993), pp. 251–322.
  8. S. A. J. Druet, J.-P. E. Taran, “CARS spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
    [CrossRef]
  9. R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,”Sandia Rep. SAND89–8206 (Sandia National Laboratories, Livermore, Calif., 1989).
  10. L. A. Rahn, R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986).
    [CrossRef]
  11. M. A. Woodmansee, R. P. Lucht, J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt. 39, 6243–6256 (2000).
    [CrossRef]
  12. R. P. Lucht, R. E. Palmer, M. A. Maris, “Simultaneous acquisition of pure rotational and vibrational nitrogen spectra using three-laser coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 12, 386–388 (1987).
    [CrossRef] [PubMed]
  13. R. E. Foglesong, S. M. Green, R. P. Lucht, J. C. Dutton, “Dual-pump coherent anti-Stokes Raman scattering for simultaneous pressure/temperature measurement,” AIAA J. 36, 234–240 (1998).
    [CrossRef]
  14. M. A. Woodmansee, “Experimental measurements of pressure, temperature, and density using high-resolution N2 coherent anti-Stokes Raman scattering,” Ph.D. dissertation (University of Illinois, Chicago, Illinois, 1999).
  15. M. A. Woodmansee, J. C. Dutton, R. P. Lucht, “Experimental measurements of pressure, temperature, and density in an underexpanded sonic jet flowfield,” paper AIAA-99–3600, presented at the 30th AIAA Fluid Dynamics Conference, Norfolk, Va., 28 June–1 July 1999 (American Institute of Aeronautics and Astronautics, Reston, Va.1999).
  16. P. Ewart, “A modeless, variable bandwidth, tunable laser,” Opt. Commun. 55, 124–126 (1985).
    [CrossRef]
  17. D. R. Snelling, R. A. Sawchuk, T. Parameswaran, “Noise in single-shot broadband coherent anti-Stokes Raman spectroscopy that employs a modeless dye laser,” Appl. Opt. 33, 8295–8301 (1994).
    [CrossRef] [PubMed]
  18. D. A. Greenhalgh, S. T. Whittley, “Mode noise in broadband CARS spectroscopy,” Appl. Opt. 24, 907–913 (1985).
    [CrossRef] [PubMed]
  19. P. Snowdon, S. M. Skippon, P. Ewart, “Improved precision of single-shot temperature measurements by broadband CARS by use of a modeless laser,” Appl. Opt. 30, 1008–1010 (1991).
    [CrossRef] [PubMed]
  20. J. W. Hahn, C. W. Park, S. N. Park, “Broadband coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt. 36, 6722–6728 (1997).
    [CrossRef]
  21. D. S. Bethune, “Dye cell design for high-power low-divergence excimer-pumped dye lasers,” Appl. Opt. 20, 1897–1899 (1981).
    [CrossRef] [PubMed]
  22. R. P. Lucht, V. Velur-Natarajan, C. D. Carter, K. D. Grinstead, J. R. Gord, P. M. Danehy, G. J. Fiechtner, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering temperature and CO2 concentration measurements,” AIAA J. 41, 679–686 (2003).
    [CrossRef]
  23. R. E. Foglesong, J. P. Kuehner, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Coherent anti-Stokes Raman scattering measurements in a lean premixed gas turbine combustor,” in Proceedings of the Eight International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-8, J. C. Han, ed. (Pacific Center of Thermal-Fluids Engineering, Kehei, Maui, Hawaii, 2000), Vol. 2, pp. 849–856.
  24. M. Czerny, A. F. Turner, “Über den astigmatismus bei spiegelspektrometern,” Z. Phys. 61, 792–797 (1930).
    [CrossRef]
  25. T. Dreier, G. Schiff, A. A. Suvernev, “Collisional effects in Q branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature,” J. Chem. Phys. 100, 6275–6289 (1994).
    [CrossRef]
  26. C. D. Mikkelsen, K. D. Kennedy, AMSAM-RD-SS-AT, U.S. Army Aviation and Missile Command, Redstone Arsenal, Ala. 35898-5252 (personal communication, 2001).

2003

R. P. Lucht, V. Velur-Natarajan, C. D. Carter, K. D. Grinstead, J. R. Gord, P. M. Danehy, G. J. Fiechtner, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering temperature and CO2 concentration measurements,” AIAA J. 41, 679–686 (2003).
[CrossRef]

2000

1999

A. Krothapalli, E. Rajkuperan, F. Alvi, L. Lourenco, “Flow field and noise characteristics of a supersonic impinging jet,” J. Fluid Mech. 392, 155–181 (1999).
[CrossRef]

1998

R. E. Foglesong, S. M. Green, R. P. Lucht, J. C. Dutton, “Dual-pump coherent anti-Stokes Raman scattering for simultaneous pressure/temperature measurement,” AIAA J. 36, 234–240 (1998).
[CrossRef]

1997

1995

E. J. Gutmark, K. C. Schadow, K. H. Yu, “Mixing enhancement in supersonic free shear flows,” Annu. Rev. Fluid Mech. 27, 375–417 (1995).
[CrossRef]

1994

J. Sahu, “Numerical computations of supersonic base flow with special emphasis on turbulence modeling,” AIAA J. 32, 1547–1549 (1994).
[CrossRef]

D. R. Snelling, R. A. Sawchuk, T. Parameswaran, “Noise in single-shot broadband coherent anti-Stokes Raman spectroscopy that employs a modeless dye laser,” Appl. Opt. 33, 8295–8301 (1994).
[CrossRef] [PubMed]

T. Dreier, G. Schiff, A. A. Suvernev, “Collisional effects in Q branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature,” J. Chem. Phys. 100, 6275–6289 (1994).
[CrossRef]

1991

1987

1986

1985

D. A. Greenhalgh, S. T. Whittley, “Mode noise in broadband CARS spectroscopy,” Appl. Opt. 24, 907–913 (1985).
[CrossRef] [PubMed]

P. Ewart, “A modeless, variable bandwidth, tunable laser,” Opt. Commun. 55, 124–126 (1985).
[CrossRef]

1981

1980

S. M. Dash, B. E. Pearce, H. S. Pergament, E. S. Fishburne, “Prediction of rocket plume flowfields for infrared signature studies,” J. Spacecr. Rockets 17, 190–199 (1980).
[CrossRef]

1977

1930

M. Czerny, A. F. Turner, “Über den astigmatismus bei spiegelspektrometern,” Z. Phys. 61, 792–797 (1930).
[CrossRef]

Alvi, F.

A. Krothapalli, E. Rajkuperan, F. Alvi, L. Lourenco, “Flow field and noise characteristics of a supersonic impinging jet,” J. Fluid Mech. 392, 155–181 (1999).
[CrossRef]

Bethune, D. S.

Carter, C. D.

R. P. Lucht, V. Velur-Natarajan, C. D. Carter, K. D. Grinstead, J. R. Gord, P. M. Danehy, G. J. Fiechtner, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering temperature and CO2 concentration measurements,” AIAA J. 41, 679–686 (2003).
[CrossRef]

Czerny, M.

M. Czerny, A. F. Turner, “Über den astigmatismus bei spiegelspektrometern,” Z. Phys. 61, 792–797 (1930).
[CrossRef]

Danehy, P. M.

R. P. Lucht, V. Velur-Natarajan, C. D. Carter, K. D. Grinstead, J. R. Gord, P. M. Danehy, G. J. Fiechtner, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering temperature and CO2 concentration measurements,” AIAA J. 41, 679–686 (2003).
[CrossRef]

Dash, S. M.

S. M. Dash, B. E. Pearce, H. S. Pergament, E. S. Fishburne, “Prediction of rocket plume flowfields for infrared signature studies,” J. Spacecr. Rockets 17, 190–199 (1980).
[CrossRef]

Dreier, T.

T. Dreier, G. Schiff, A. A. Suvernev, “Collisional effects in Q branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature,” J. Chem. Phys. 100, 6275–6289 (1994).
[CrossRef]

Druet, S. A. J.

S. A. J. Druet, J.-P. E. Taran, “CARS spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

Dutton, J. C.

M. A. Woodmansee, R. P. Lucht, J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt. 39, 6243–6256 (2000).
[CrossRef]

R. E. Foglesong, S. M. Green, R. P. Lucht, J. C. Dutton, “Dual-pump coherent anti-Stokes Raman scattering for simultaneous pressure/temperature measurement,” AIAA J. 36, 234–240 (1998).
[CrossRef]

M. A. Woodmansee, J. C. Dutton, R. P. Lucht, “Experimental measurements of pressure, temperature, and density in an underexpanded sonic jet flowfield,” paper AIAA-99–3600, presented at the 30th AIAA Fluid Dynamics Conference, Norfolk, Va., 28 June–1 July 1999 (American Institute of Aeronautics and Astronautics, Reston, Va.1999).

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, St. Leonards, Australia, 1996).

Ewart, P.

Farrow, R. L.

R. P. Lucht, V. Velur-Natarajan, C. D. Carter, K. D. Grinstead, J. R. Gord, P. M. Danehy, G. J. Fiechtner, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering temperature and CO2 concentration measurements,” AIAA J. 41, 679–686 (2003).
[CrossRef]

Fiechtner, G. J.

R. P. Lucht, V. Velur-Natarajan, C. D. Carter, K. D. Grinstead, J. R. Gord, P. M. Danehy, G. J. Fiechtner, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering temperature and CO2 concentration measurements,” AIAA J. 41, 679–686 (2003).
[CrossRef]

Fishburne, E. S.

S. M. Dash, B. E. Pearce, H. S. Pergament, E. S. Fishburne, “Prediction of rocket plume flowfields for infrared signature studies,” J. Spacecr. Rockets 17, 190–199 (1980).
[CrossRef]

Flamand, L. M.

R. E. Foglesong, J. P. Kuehner, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Coherent anti-Stokes Raman scattering measurements in a lean premixed gas turbine combustor,” in Proceedings of the Eight International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-8, J. C. Han, ed. (Pacific Center of Thermal-Fluids Engineering, Kehei, Maui, Hawaii, 2000), Vol. 2, pp. 849–856.

Foglesong, R. E.

R. E. Foglesong, S. M. Green, R. P. Lucht, J. C. Dutton, “Dual-pump coherent anti-Stokes Raman scattering for simultaneous pressure/temperature measurement,” AIAA J. 36, 234–240 (1998).
[CrossRef]

R. E. Foglesong, J. P. Kuehner, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Coherent anti-Stokes Raman scattering measurements in a lean premixed gas turbine combustor,” in Proceedings of the Eight International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-8, J. C. Han, ed. (Pacific Center of Thermal-Fluids Engineering, Kehei, Maui, Hawaii, 2000), Vol. 2, pp. 849–856.

Frazier, T. R.

R. E. Foglesong, J. P. Kuehner, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Coherent anti-Stokes Raman scattering measurements in a lean premixed gas turbine combustor,” in Proceedings of the Eight International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-8, J. C. Han, ed. (Pacific Center of Thermal-Fluids Engineering, Kehei, Maui, Hawaii, 2000), Vol. 2, pp. 849–856.

Gord, J. R.

R. P. Lucht, V. Velur-Natarajan, C. D. Carter, K. D. Grinstead, J. R. Gord, P. M. Danehy, G. J. Fiechtner, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering temperature and CO2 concentration measurements,” AIAA J. 41, 679–686 (2003).
[CrossRef]

Goss, L. P.

L. P. Goss, “CARS instrumentation for combustion applications,” in Instrumentation for Flows with Combustion, A. M. K. P. Taylor, ed. (Academic, London, 1993), pp. 251–322.

Green, S. M.

R. E. Foglesong, S. M. Green, R. P. Lucht, J. C. Dutton, “Dual-pump coherent anti-Stokes Raman scattering for simultaneous pressure/temperature measurement,” AIAA J. 36, 234–240 (1998).
[CrossRef]

Greenhalgh, D. A.

Grinstead, K. D.

R. P. Lucht, V. Velur-Natarajan, C. D. Carter, K. D. Grinstead, J. R. Gord, P. M. Danehy, G. J. Fiechtner, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering temperature and CO2 concentration measurements,” AIAA J. 41, 679–686 (2003).
[CrossRef]

Gutmark, E. J.

E. J. Gutmark, K. C. Schadow, K. H. Yu, “Mixing enhancement in supersonic free shear flows,” Annu. Rev. Fluid Mech. 27, 375–417 (1995).
[CrossRef]

Hahn, J. W.

Harvey, A. B.

Kennedy, K. D.

C. D. Mikkelsen, K. D. Kennedy, AMSAM-RD-SS-AT, U.S. Army Aviation and Missile Command, Redstone Arsenal, Ala. 35898-5252 (personal communication, 2001).

Krothapalli, A.

A. Krothapalli, E. Rajkuperan, F. Alvi, L. Lourenco, “Flow field and noise characteristics of a supersonic impinging jet,” J. Fluid Mech. 392, 155–181 (1999).
[CrossRef]

Kuehner, J. P.

R. E. Foglesong, J. P. Kuehner, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Coherent anti-Stokes Raman scattering measurements in a lean premixed gas turbine combustor,” in Proceedings of the Eight International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-8, J. C. Han, ed. (Pacific Center of Thermal-Fluids Engineering, Kehei, Maui, Hawaii, 2000), Vol. 2, pp. 849–856.

Lourenco, L.

A. Krothapalli, E. Rajkuperan, F. Alvi, L. Lourenco, “Flow field and noise characteristics of a supersonic impinging jet,” J. Fluid Mech. 392, 155–181 (1999).
[CrossRef]

Lucht, R. P.

R. P. Lucht, V. Velur-Natarajan, C. D. Carter, K. D. Grinstead, J. R. Gord, P. M. Danehy, G. J. Fiechtner, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering temperature and CO2 concentration measurements,” AIAA J. 41, 679–686 (2003).
[CrossRef]

M. A. Woodmansee, R. P. Lucht, J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt. 39, 6243–6256 (2000).
[CrossRef]

R. E. Foglesong, S. M. Green, R. P. Lucht, J. C. Dutton, “Dual-pump coherent anti-Stokes Raman scattering for simultaneous pressure/temperature measurement,” AIAA J. 36, 234–240 (1998).
[CrossRef]

R. P. Lucht, R. E. Palmer, M. A. Maris, “Simultaneous acquisition of pure rotational and vibrational nitrogen spectra using three-laser coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 12, 386–388 (1987).
[CrossRef] [PubMed]

M. A. Woodmansee, J. C. Dutton, R. P. Lucht, “Experimental measurements of pressure, temperature, and density in an underexpanded sonic jet flowfield,” paper AIAA-99–3600, presented at the 30th AIAA Fluid Dynamics Conference, Norfolk, Va., 28 June–1 July 1999 (American Institute of Aeronautics and Astronautics, Reston, Va.1999).

R. E. Foglesong, J. P. Kuehner, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Coherent anti-Stokes Raman scattering measurements in a lean premixed gas turbine combustor,” in Proceedings of the Eight International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-8, J. C. Han, ed. (Pacific Center of Thermal-Fluids Engineering, Kehei, Maui, Hawaii, 2000), Vol. 2, pp. 849–856.

Maris, M. A.

McDonald, J. R.

Mikkelsen, C. D.

C. D. Mikkelsen, K. D. Kennedy, AMSAM-RD-SS-AT, U.S. Army Aviation and Missile Command, Redstone Arsenal, Ala. 35898-5252 (personal communication, 2001).

Nibler, J. W.

Palmer, R. E.

Parameswaran, T.

Park, C. W.

Park, S. N.

Pearce, B. E.

S. M. Dash, B. E. Pearce, H. S. Pergament, E. S. Fishburne, “Prediction of rocket plume flowfields for infrared signature studies,” J. Spacecr. Rockets 17, 190–199 (1980).
[CrossRef]

Pergament, H. S.

S. M. Dash, B. E. Pearce, H. S. Pergament, E. S. Fishburne, “Prediction of rocket plume flowfields for infrared signature studies,” J. Spacecr. Rockets 17, 190–199 (1980).
[CrossRef]

Peters, J. E.

R. E. Foglesong, J. P. Kuehner, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Coherent anti-Stokes Raman scattering measurements in a lean premixed gas turbine combustor,” in Proceedings of the Eight International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-8, J. C. Han, ed. (Pacific Center of Thermal-Fluids Engineering, Kehei, Maui, Hawaii, 2000), Vol. 2, pp. 849–856.

Rahn, L. A.

Rajkuperan, E.

A. Krothapalli, E. Rajkuperan, F. Alvi, L. Lourenco, “Flow field and noise characteristics of a supersonic impinging jet,” J. Fluid Mech. 392, 155–181 (1999).
[CrossRef]

Sahu, J.

J. Sahu, “Numerical computations of supersonic base flow with special emphasis on turbulence modeling,” AIAA J. 32, 1547–1549 (1994).
[CrossRef]

Sawchuk, R. A.

Schadow, K. C.

E. J. Gutmark, K. C. Schadow, K. H. Yu, “Mixing enhancement in supersonic free shear flows,” Annu. Rev. Fluid Mech. 27, 375–417 (1995).
[CrossRef]

Schiff, G.

T. Dreier, G. Schiff, A. A. Suvernev, “Collisional effects in Q branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature,” J. Chem. Phys. 100, 6275–6289 (1994).
[CrossRef]

Skippon, S. M.

Snelling, D. R.

Snowdon, P.

Suvernev, A. A.

T. Dreier, G. Schiff, A. A. Suvernev, “Collisional effects in Q branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature,” J. Chem. Phys. 100, 6275–6289 (1994).
[CrossRef]

Taran, J.-P. E.

S. A. J. Druet, J.-P. E. Taran, “CARS spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

Tolles, W. M.

Turner, A. F.

M. Czerny, A. F. Turner, “Über den astigmatismus bei spiegelspektrometern,” Z. Phys. 61, 792–797 (1930).
[CrossRef]

Velur-Natarajan, V.

R. P. Lucht, V. Velur-Natarajan, C. D. Carter, K. D. Grinstead, J. R. Gord, P. M. Danehy, G. J. Fiechtner, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering temperature and CO2 concentration measurements,” AIAA J. 41, 679–686 (2003).
[CrossRef]

Whittley, S. T.

Woodmansee, M. A.

M. A. Woodmansee, R. P. Lucht, J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt. 39, 6243–6256 (2000).
[CrossRef]

M. A. Woodmansee, “Experimental measurements of pressure, temperature, and density using high-resolution N2 coherent anti-Stokes Raman scattering,” Ph.D. dissertation (University of Illinois, Chicago, Illinois, 1999).

M. A. Woodmansee, J. C. Dutton, R. P. Lucht, “Experimental measurements of pressure, temperature, and density in an underexpanded sonic jet flowfield,” paper AIAA-99–3600, presented at the 30th AIAA Fluid Dynamics Conference, Norfolk, Va., 28 June–1 July 1999 (American Institute of Aeronautics and Astronautics, Reston, Va.1999).

Yu, K. H.

E. J. Gutmark, K. C. Schadow, K. H. Yu, “Mixing enhancement in supersonic free shear flows,” Annu. Rev. Fluid Mech. 27, 375–417 (1995).
[CrossRef]

AIAA J.

J. Sahu, “Numerical computations of supersonic base flow with special emphasis on turbulence modeling,” AIAA J. 32, 1547–1549 (1994).
[CrossRef]

R. E. Foglesong, S. M. Green, R. P. Lucht, J. C. Dutton, “Dual-pump coherent anti-Stokes Raman scattering for simultaneous pressure/temperature measurement,” AIAA J. 36, 234–240 (1998).
[CrossRef]

R. P. Lucht, V. Velur-Natarajan, C. D. Carter, K. D. Grinstead, J. R. Gord, P. M. Danehy, G. J. Fiechtner, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering temperature and CO2 concentration measurements,” AIAA J. 41, 679–686 (2003).
[CrossRef]

Annu. Rev. Fluid Mech.

E. J. Gutmark, K. C. Schadow, K. H. Yu, “Mixing enhancement in supersonic free shear flows,” Annu. Rev. Fluid Mech. 27, 375–417 (1995).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

J. Chem. Phys.

T. Dreier, G. Schiff, A. A. Suvernev, “Collisional effects in Q branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature,” J. Chem. Phys. 100, 6275–6289 (1994).
[CrossRef]

J. Fluid Mech.

A. Krothapalli, E. Rajkuperan, F. Alvi, L. Lourenco, “Flow field and noise characteristics of a supersonic impinging jet,” J. Fluid Mech. 392, 155–181 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Spacecr. Rockets

S. M. Dash, B. E. Pearce, H. S. Pergament, E. S. Fishburne, “Prediction of rocket plume flowfields for infrared signature studies,” J. Spacecr. Rockets 17, 190–199 (1980).
[CrossRef]

Opt. Commun.

P. Ewart, “A modeless, variable bandwidth, tunable laser,” Opt. Commun. 55, 124–126 (1985).
[CrossRef]

Opt. Lett.

Prog. Quantum Electron.

S. A. J. Druet, J.-P. E. Taran, “CARS spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

Z. Phys.

M. Czerny, A. F. Turner, “Über den astigmatismus bei spiegelspektrometern,” Z. Phys. 61, 792–797 (1930).
[CrossRef]

Other

C. D. Mikkelsen, K. D. Kennedy, AMSAM-RD-SS-AT, U.S. Army Aviation and Missile Command, Redstone Arsenal, Ala. 35898-5252 (personal communication, 2001).

R. E. Foglesong, J. P. Kuehner, T. R. Frazier, L. M. Flamand, J. E. Peters, R. P. Lucht, “Coherent anti-Stokes Raman scattering measurements in a lean premixed gas turbine combustor,” in Proceedings of the Eight International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-8, J. C. Han, ed. (Pacific Center of Thermal-Fluids Engineering, Kehei, Maui, Hawaii, 2000), Vol. 2, pp. 849–856.

M. A. Woodmansee, “Experimental measurements of pressure, temperature, and density using high-resolution N2 coherent anti-Stokes Raman scattering,” Ph.D. dissertation (University of Illinois, Chicago, Illinois, 1999).

M. A. Woodmansee, J. C. Dutton, R. P. Lucht, “Experimental measurements of pressure, temperature, and density in an underexpanded sonic jet flowfield,” paper AIAA-99–3600, presented at the 30th AIAA Fluid Dynamics Conference, Norfolk, Va., 28 June–1 July 1999 (American Institute of Aeronautics and Astronautics, Reston, Va.1999).

R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,”Sandia Rep. SAND89–8206 (Sandia National Laboratories, Livermore, Calif., 1989).

L. P. Goss, “CARS instrumentation for combustion applications,” in Instrumentation for Flows with Combustion, A. M. K. P. Taylor, ed. (Academic, London, 1993), pp. 251–322.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, St. Leonards, Australia, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Top view of the high-resolution N2 CARS system.

Fig. 2
Fig. 2

Comparison of the mean spectral-fitting procedure results with different starting points.

Fig. 3
Fig. 3

Comparison of single-shot experimental CARS and theoretical carsfit spectra from the pressure vessel for (a) 0.1 atm, (b) 1.0 atm, and (c) 3.0 atm.

Fig. 4
Fig. 4

Comparison of our mean single-shot pressure vessel results with those of Woodmansee et al. 11 for (a) the full range and (b) low-pressure subset.

Fig. 5
Fig. 5

Comparison of our single-shot standard deviation results from the pressure vessel with those of Woodmansee et al. 11

Fig. 6
Fig. 6

Number of single-shot pressure vessel spectra retained out of 500 in each data set.

Fig. 7
Fig. 7

Underexpanded jet flow field.

Fig. 8
Fig. 8

Comparison of single-shot experimental CARS and theoretical carsfit spectra along the centerline of the underexpanded jet at z/d j = (a) 0.019, (b) 0.870, (c) 1.508, and (d) 1.579.

Fig. 9
Fig. 9

Comparison of mean single-shot centerline results with those of Woodmansee et al. 11 and CFD results for (a) pressure and (b) temperature.

Fig. 10
Fig. 10

Comparison of single-shot standard deviation centerline results with those of Woodmansee et al. 11 for (a) pressure and (b) temperature.

Fig. 11
Fig. 11

Number of single-shot centerline spectra fitted and retained.

Metrics