Abstract

A portable UV laser-induced fluorescence system that uses a high pulsed repetition frequency (8-kHz) microchip laser at 266 nm, 13 switchable optical filters, and a gated photomultiplier tube detector has been developed and tested successfully for the detection of leached plastics (possibly bisphenol-A) and trace dissolved organic compounds in seawater. The instrument is 100 times more sensitive than commercial portable spectrofluorometers and measures a complete fluorescence spectrum in a moderate time period of 1–2 min. The system was tested in the Gulf of Mexico over varying water masses. In addition, fluorescence lifetime, bleaching, and temporal flow characteristics were studied.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
    [CrossRef]
  2. P. G. Coble, J. Boehme, College of Marine Science, University of South Florida, St. Petersburg, Fla. (personal communication, 2000).
  3. V. Sivaprakasam, D. K. Killinger, “Tunable ultraviolet laser-induced fluorescence detection of trace plastics and dissolved organic compounds in water,” Appl. Opt. 42, 6739–6746 (2003).
    [CrossRef] [PubMed]
  4. V. Sivaprakasam, D. K. Killinger, “Effect of polarization and geometric factors on quantitative laser-induced fluorescence-to-Raman intensity ratios for water samples and a new calibration technique,” J. Opt. Soc. Am. B 20, 1980–1989 (2003).
    [CrossRef]
  5. P. G. Coble, R. N. Comny, F. E. Muller-Karger, L. Vanderbloemen, G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River Plume in the West Florida Shell,” Limnol. Oceanogr. 46, 1836–1843 (2001).
    [CrossRef]
  6. M. P. Hehlen, “Reabsorption artifacts in measured excited-state lifetimes of solids,” J. Opt. Soc. Am. B 14, 1312–1318 (1997).
    [CrossRef]
  7. R. A. Velapoldi, K. D. Mielenz, A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate (National Bureau of Standards, Washington D.C., 1979).
  8. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic, New York, 1999).
    [CrossRef]
  9. H. Shah, I. B. Rufus, C. E. Hoyle, “Photochemistry of bisphenol-A-based polycarbonate: early detection of photoproducts by fluorescence spectroscopy,” Macromolecules 27, 553–561 (1994).
    [CrossRef]
  10. A. Factor, W. V. Ligon, R. J. May, “The role of oxygen in the photoaging of bisphenol A polycarbonate. GC/GC high-resolution MS analysis of Florida-weathered polycarbonate,” Macromolecules 20, 2461–2468 (1987).
    [CrossRef]

2003 (2)

2001 (1)

P. G. Coble, R. N. Comny, F. E. Muller-Karger, L. Vanderbloemen, G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River Plume in the West Florida Shell,” Limnol. Oceanogr. 46, 1836–1843 (2001).
[CrossRef]

1997 (1)

1996 (1)

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
[CrossRef]

1994 (1)

H. Shah, I. B. Rufus, C. E. Hoyle, “Photochemistry of bisphenol-A-based polycarbonate: early detection of photoproducts by fluorescence spectroscopy,” Macromolecules 27, 553–561 (1994).
[CrossRef]

1987 (1)

A. Factor, W. V. Ligon, R. J. May, “The role of oxygen in the photoaging of bisphenol A polycarbonate. GC/GC high-resolution MS analysis of Florida-weathered polycarbonate,” Macromolecules 20, 2461–2468 (1987).
[CrossRef]

Boehme, J.

P. G. Coble, J. Boehme, College of Marine Science, University of South Florida, St. Petersburg, Fla. (personal communication, 2000).

Coble, P. G.

P. G. Coble, R. N. Comny, F. E. Muller-Karger, L. Vanderbloemen, G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River Plume in the West Florida Shell,” Limnol. Oceanogr. 46, 1836–1843 (2001).
[CrossRef]

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
[CrossRef]

P. G. Coble, J. Boehme, College of Marine Science, University of South Florida, St. Petersburg, Fla. (personal communication, 2000).

Comny, R. N.

P. G. Coble, R. N. Comny, F. E. Muller-Karger, L. Vanderbloemen, G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River Plume in the West Florida Shell,” Limnol. Oceanogr. 46, 1836–1843 (2001).
[CrossRef]

Factor, A.

A. Factor, W. V. Ligon, R. J. May, “The role of oxygen in the photoaging of bisphenol A polycarbonate. GC/GC high-resolution MS analysis of Florida-weathered polycarbonate,” Macromolecules 20, 2461–2468 (1987).
[CrossRef]

Hehlen, M. P.

Hoyle, C. E.

H. Shah, I. B. Rufus, C. E. Hoyle, “Photochemistry of bisphenol-A-based polycarbonate: early detection of photoproducts by fluorescence spectroscopy,” Macromolecules 27, 553–561 (1994).
[CrossRef]

Killinger, D. K.

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic, New York, 1999).
[CrossRef]

Ligon, W. V.

A. Factor, W. V. Ligon, R. J. May, “The role of oxygen in the photoaging of bisphenol A polycarbonate. GC/GC high-resolution MS analysis of Florida-weathered polycarbonate,” Macromolecules 20, 2461–2468 (1987).
[CrossRef]

May, R. J.

A. Factor, W. V. Ligon, R. J. May, “The role of oxygen in the photoaging of bisphenol A polycarbonate. GC/GC high-resolution MS analysis of Florida-weathered polycarbonate,” Macromolecules 20, 2461–2468 (1987).
[CrossRef]

Mielenz, K. D.

R. A. Velapoldi, K. D. Mielenz, A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate (National Bureau of Standards, Washington D.C., 1979).

Muller-Karger, F. E.

P. G. Coble, R. N. Comny, F. E. Muller-Karger, L. Vanderbloemen, G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River Plume in the West Florida Shell,” Limnol. Oceanogr. 46, 1836–1843 (2001).
[CrossRef]

Rufus, I. B.

H. Shah, I. B. Rufus, C. E. Hoyle, “Photochemistry of bisphenol-A-based polycarbonate: early detection of photoproducts by fluorescence spectroscopy,” Macromolecules 27, 553–561 (1994).
[CrossRef]

Shah, H.

H. Shah, I. B. Rufus, C. E. Hoyle, “Photochemistry of bisphenol-A-based polycarbonate: early detection of photoproducts by fluorescence spectroscopy,” Macromolecules 27, 553–561 (1994).
[CrossRef]

Sivaprakasam, V.

Vanderbloemen, L.

P. G. Coble, R. N. Comny, F. E. Muller-Karger, L. Vanderbloemen, G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River Plume in the West Florida Shell,” Limnol. Oceanogr. 46, 1836–1843 (2001).
[CrossRef]

Vargo, G. A.

P. G. Coble, R. N. Comny, F. E. Muller-Karger, L. Vanderbloemen, G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River Plume in the West Florida Shell,” Limnol. Oceanogr. 46, 1836–1843 (2001).
[CrossRef]

Velapoldi, R. A.

R. A. Velapoldi, K. D. Mielenz, A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate (National Bureau of Standards, Washington D.C., 1979).

Appl. Opt. (1)

J. Opt. Soc. Am. B (2)

Limnol. Oceanogr. (1)

P. G. Coble, R. N. Comny, F. E. Muller-Karger, L. Vanderbloemen, G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River Plume in the West Florida Shell,” Limnol. Oceanogr. 46, 1836–1843 (2001).
[CrossRef]

Macromolecules (2)

H. Shah, I. B. Rufus, C. E. Hoyle, “Photochemistry of bisphenol-A-based polycarbonate: early detection of photoproducts by fluorescence spectroscopy,” Macromolecules 27, 553–561 (1994).
[CrossRef]

A. Factor, W. V. Ligon, R. J. May, “The role of oxygen in the photoaging of bisphenol A polycarbonate. GC/GC high-resolution MS analysis of Florida-weathered polycarbonate,” Macromolecules 20, 2461–2468 (1987).
[CrossRef]

Mar. Chem. (1)

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
[CrossRef]

Other (3)

P. G. Coble, J. Boehme, College of Marine Science, University of South Florida, St. Petersburg, Fla. (personal communication, 2000).

R. A. Velapoldi, K. D. Mielenz, A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate (National Bureau of Standards, Washington D.C., 1979).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic, New York, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the experimental setup of the portable LIF system.

Fig. 2
Fig. 2

Wavelength positions of the interference filters used in the portable LIF system overlaid on top of the fluorescence spectrum of seawater.

Fig. 3
Fig. 3

Relative LIF signal from quinine sulfate (10 ppb) for various configurations of the optical excitation and collection system. The signal for a single excitation pass and single collection lens is shown as the signal at 100%. (a) The multipass geometry consisted of four passes of the laser beam; (b) the multipass geometry consisted of seven passes of the laser beam.

Fig. 4
Fig. 4

Fluorescence of quinine sulfate in sulphuric acid at 451 nm and bisphenol-A in distilled water at 314 nm minus the background signal for varying concentrations of the sample.

Fig. 5
Fig. 5

LIF spectra measured during the test cruise from approximately 9:30 a.m. on 5 September to the end of the cruise at 5:30 p.m. on 6 September 2001 in Tampa Bay. The cruise spanned a time duration of approximately 32 h.

Fig. 6
Fig. 6

LIF spectra of blue water (100 miles offshore) and distilled water.

Fig. 7
Fig. 7

LIF spectra of quinine sulfate (10 ppb) for nonflowing and flowing samples at a rate of 0.7 l/min showing laser-induced bleaching of the quinine sulfate.

Fig. 8
Fig. 8

LIF spectra of bisphenol-A (500 ppb) for nonflowing and flowing samples at a rate of 0.7 l/min showing laser-induced chemical decomposition or chemical formation.

Fig. 9
Fig. 9

LIF signal of river water measured as a function of time.

Fig. 10
Fig. 10

LIF signal of river water filtered with a particle filter with a hole size of 0.2 μm in diameter.

Tables (2)

Tables Icon

Table 1 Transmission of the Various Interference and Absorption Filters, Bandwidth of the Interference Filters, and Quantum Efficiency of the PMT Detector

Tables Icon

Table 2 Measured Sensitivity Limits for the Detection of Quinine Sulfate and Bisphenol-A in Distilled Water and Seawater for the Two LIF Laboratory Systems, the Portable LIF System, and Two Commercial Systems Used by the USF Marine Science Group

Metrics