Abstract

We developed a tunable (220–285-nm) UV and fixed 266-nm laser-induced fluorescence (LIF) system using a spectrometer and a cooled CCD imaging detector to measure the excitation-emission matrix spectra of various compounds in water, including quinine sulfate and plastic compound bisphenol-A. The LIF instrument was used for the fast, nonspecific determination of trace amounts of dissolved organic compounds present in natural water supplies and various brand name bottled distilled water and bottled drinking water. Plastic-related compounds that leached out of plastic utensils and containers were also detected with this instrument. The sensitivity of the system was approximately 1–2 orders of magnitude better than that for a commercial system.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Andrews, Applied Laser Spectroscopy (VCH, New York, 1992).
  2. G. G. Guilbault, Practical Fluorescence (Marcel Dekker, New York, 1973).
  3. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic, New York, 1999).
    [CrossRef]
  4. P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
    [CrossRef]
  5. P. G. Coble, J. Boehme, College of Marine Science, University of South Florida, St. Petersburg, Fla. (personal communication, 2000).
  6. R. A. Velapoldi, K. D. Mielenz, A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate (National Bureau of Standards, Washington, D.C., 1979).
  7. P. Palanza, K. K. Howdeshell, S. Parmigiani, F. S. Vom Saal, “Exposure to a low dose of bisphenol A during fetal life or in adulthood alters maternal behavior in mice,” Environ. Health Perspect. 110, 414–422 (2002).
    [CrossRef]
  8. R. J. Witorsch, “Endocrine disruptors: can biological effects and environmental risks be predicted?” Reg. Toxicol. Pharmacol. 36, 118–130 (2002).
    [CrossRef]
  9. C. A. Staples, K. Woodburn, N. Caspers, A. T. Hall, G. M. Klecka, “A weight of evidence approach to the aquatic hazard assessment of bisphenol A,” Hum. Ecol. Risk Assess. 8, 1083–1105 (2002).
    [CrossRef]
  10. A. Belfroid, V. M. Velzen, B. van der Horst, D. Vethaak, “Occurrence of bisphenol A in surface water and uptake in fish: evaluation of field measurements,” Chemosphere 49, 97–103 (2002).
    [CrossRef] [PubMed]
  11. A. Goodson, W. Summerfield, I. Cooper, “Survey of bisphenol A and bisphenol F in canned foods,” Food Add. Contam. 19, 796–802 (2002).
    [CrossRef]
  12. P. G. Coble, C. A. Schultz, K. Mopper, “Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques,” Mar. Chem. 41, 173–178 (1993).
    [CrossRef]
  13. P. G. Coble, C. E. Del Castillo, B. Avril, “Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon,” Deep-Sea Res. II 45, 2195–2223 (1998).
    [CrossRef]
  14. R. H. Kingston, Optical Sources, Detectors, and Systems: Fundamentals and Applications (Academic, San Diego, Calif., 1995).

2002 (5)

P. Palanza, K. K. Howdeshell, S. Parmigiani, F. S. Vom Saal, “Exposure to a low dose of bisphenol A during fetal life or in adulthood alters maternal behavior in mice,” Environ. Health Perspect. 110, 414–422 (2002).
[CrossRef]

R. J. Witorsch, “Endocrine disruptors: can biological effects and environmental risks be predicted?” Reg. Toxicol. Pharmacol. 36, 118–130 (2002).
[CrossRef]

C. A. Staples, K. Woodburn, N. Caspers, A. T. Hall, G. M. Klecka, “A weight of evidence approach to the aquatic hazard assessment of bisphenol A,” Hum. Ecol. Risk Assess. 8, 1083–1105 (2002).
[CrossRef]

A. Belfroid, V. M. Velzen, B. van der Horst, D. Vethaak, “Occurrence of bisphenol A in surface water and uptake in fish: evaluation of field measurements,” Chemosphere 49, 97–103 (2002).
[CrossRef] [PubMed]

A. Goodson, W. Summerfield, I. Cooper, “Survey of bisphenol A and bisphenol F in canned foods,” Food Add. Contam. 19, 796–802 (2002).
[CrossRef]

1998 (1)

P. G. Coble, C. E. Del Castillo, B. Avril, “Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon,” Deep-Sea Res. II 45, 2195–2223 (1998).
[CrossRef]

1996 (1)

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
[CrossRef]

1993 (1)

P. G. Coble, C. A. Schultz, K. Mopper, “Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques,” Mar. Chem. 41, 173–178 (1993).
[CrossRef]

Andrews, D. L.

D. L. Andrews, Applied Laser Spectroscopy (VCH, New York, 1992).

Avril, B.

P. G. Coble, C. E. Del Castillo, B. Avril, “Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon,” Deep-Sea Res. II 45, 2195–2223 (1998).
[CrossRef]

Belfroid, A.

A. Belfroid, V. M. Velzen, B. van der Horst, D. Vethaak, “Occurrence of bisphenol A in surface water and uptake in fish: evaluation of field measurements,” Chemosphere 49, 97–103 (2002).
[CrossRef] [PubMed]

Boehme, J.

P. G. Coble, J. Boehme, College of Marine Science, University of South Florida, St. Petersburg, Fla. (personal communication, 2000).

Caspers, N.

C. A. Staples, K. Woodburn, N. Caspers, A. T. Hall, G. M. Klecka, “A weight of evidence approach to the aquatic hazard assessment of bisphenol A,” Hum. Ecol. Risk Assess. 8, 1083–1105 (2002).
[CrossRef]

Coble, P. G.

P. G. Coble, C. E. Del Castillo, B. Avril, “Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon,” Deep-Sea Res. II 45, 2195–2223 (1998).
[CrossRef]

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
[CrossRef]

P. G. Coble, C. A. Schultz, K. Mopper, “Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques,” Mar. Chem. 41, 173–178 (1993).
[CrossRef]

P. G. Coble, J. Boehme, College of Marine Science, University of South Florida, St. Petersburg, Fla. (personal communication, 2000).

Cooper, I.

A. Goodson, W. Summerfield, I. Cooper, “Survey of bisphenol A and bisphenol F in canned foods,” Food Add. Contam. 19, 796–802 (2002).
[CrossRef]

Del Castillo, C. E.

P. G. Coble, C. E. Del Castillo, B. Avril, “Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon,” Deep-Sea Res. II 45, 2195–2223 (1998).
[CrossRef]

Goodson, A.

A. Goodson, W. Summerfield, I. Cooper, “Survey of bisphenol A and bisphenol F in canned foods,” Food Add. Contam. 19, 796–802 (2002).
[CrossRef]

Guilbault, G. G.

G. G. Guilbault, Practical Fluorescence (Marcel Dekker, New York, 1973).

Hall, A. T.

C. A. Staples, K. Woodburn, N. Caspers, A. T. Hall, G. M. Klecka, “A weight of evidence approach to the aquatic hazard assessment of bisphenol A,” Hum. Ecol. Risk Assess. 8, 1083–1105 (2002).
[CrossRef]

Howdeshell, K. K.

P. Palanza, K. K. Howdeshell, S. Parmigiani, F. S. Vom Saal, “Exposure to a low dose of bisphenol A during fetal life or in adulthood alters maternal behavior in mice,” Environ. Health Perspect. 110, 414–422 (2002).
[CrossRef]

Kingston, R. H.

R. H. Kingston, Optical Sources, Detectors, and Systems: Fundamentals and Applications (Academic, San Diego, Calif., 1995).

Klecka, G. M.

C. A. Staples, K. Woodburn, N. Caspers, A. T. Hall, G. M. Klecka, “A weight of evidence approach to the aquatic hazard assessment of bisphenol A,” Hum. Ecol. Risk Assess. 8, 1083–1105 (2002).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic, New York, 1999).
[CrossRef]

Mielenz, K. D.

R. A. Velapoldi, K. D. Mielenz, A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate (National Bureau of Standards, Washington, D.C., 1979).

Mopper, K.

P. G. Coble, C. A. Schultz, K. Mopper, “Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques,” Mar. Chem. 41, 173–178 (1993).
[CrossRef]

Palanza, P.

P. Palanza, K. K. Howdeshell, S. Parmigiani, F. S. Vom Saal, “Exposure to a low dose of bisphenol A during fetal life or in adulthood alters maternal behavior in mice,” Environ. Health Perspect. 110, 414–422 (2002).
[CrossRef]

Parmigiani, S.

P. Palanza, K. K. Howdeshell, S. Parmigiani, F. S. Vom Saal, “Exposure to a low dose of bisphenol A during fetal life or in adulthood alters maternal behavior in mice,” Environ. Health Perspect. 110, 414–422 (2002).
[CrossRef]

Schultz, C. A.

P. G. Coble, C. A. Schultz, K. Mopper, “Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques,” Mar. Chem. 41, 173–178 (1993).
[CrossRef]

Staples, C. A.

C. A. Staples, K. Woodburn, N. Caspers, A. T. Hall, G. M. Klecka, “A weight of evidence approach to the aquatic hazard assessment of bisphenol A,” Hum. Ecol. Risk Assess. 8, 1083–1105 (2002).
[CrossRef]

Summerfield, W.

A. Goodson, W. Summerfield, I. Cooper, “Survey of bisphenol A and bisphenol F in canned foods,” Food Add. Contam. 19, 796–802 (2002).
[CrossRef]

van der Horst, B.

A. Belfroid, V. M. Velzen, B. van der Horst, D. Vethaak, “Occurrence of bisphenol A in surface water and uptake in fish: evaluation of field measurements,” Chemosphere 49, 97–103 (2002).
[CrossRef] [PubMed]

Velapoldi, R. A.

R. A. Velapoldi, K. D. Mielenz, A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate (National Bureau of Standards, Washington, D.C., 1979).

Velzen, V. M.

A. Belfroid, V. M. Velzen, B. van der Horst, D. Vethaak, “Occurrence of bisphenol A in surface water and uptake in fish: evaluation of field measurements,” Chemosphere 49, 97–103 (2002).
[CrossRef] [PubMed]

Vethaak, D.

A. Belfroid, V. M. Velzen, B. van der Horst, D. Vethaak, “Occurrence of bisphenol A in surface water and uptake in fish: evaluation of field measurements,” Chemosphere 49, 97–103 (2002).
[CrossRef] [PubMed]

Vom Saal, F. S.

P. Palanza, K. K. Howdeshell, S. Parmigiani, F. S. Vom Saal, “Exposure to a low dose of bisphenol A during fetal life or in adulthood alters maternal behavior in mice,” Environ. Health Perspect. 110, 414–422 (2002).
[CrossRef]

Witorsch, R. J.

R. J. Witorsch, “Endocrine disruptors: can biological effects and environmental risks be predicted?” Reg. Toxicol. Pharmacol. 36, 118–130 (2002).
[CrossRef]

Woodburn, K.

C. A. Staples, K. Woodburn, N. Caspers, A. T. Hall, G. M. Klecka, “A weight of evidence approach to the aquatic hazard assessment of bisphenol A,” Hum. Ecol. Risk Assess. 8, 1083–1105 (2002).
[CrossRef]

Chemosphere (1)

A. Belfroid, V. M. Velzen, B. van der Horst, D. Vethaak, “Occurrence of bisphenol A in surface water and uptake in fish: evaluation of field measurements,” Chemosphere 49, 97–103 (2002).
[CrossRef] [PubMed]

Deep-Sea Res. II (1)

P. G. Coble, C. E. Del Castillo, B. Avril, “Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon,” Deep-Sea Res. II 45, 2195–2223 (1998).
[CrossRef]

Environ. Health Perspect. (1)

P. Palanza, K. K. Howdeshell, S. Parmigiani, F. S. Vom Saal, “Exposure to a low dose of bisphenol A during fetal life or in adulthood alters maternal behavior in mice,” Environ. Health Perspect. 110, 414–422 (2002).
[CrossRef]

Food Add. Contam. (1)

A. Goodson, W. Summerfield, I. Cooper, “Survey of bisphenol A and bisphenol F in canned foods,” Food Add. Contam. 19, 796–802 (2002).
[CrossRef]

Hum. Ecol. Risk Assess. (1)

C. A. Staples, K. Woodburn, N. Caspers, A. T. Hall, G. M. Klecka, “A weight of evidence approach to the aquatic hazard assessment of bisphenol A,” Hum. Ecol. Risk Assess. 8, 1083–1105 (2002).
[CrossRef]

Mar. Chem. (2)

P. G. Coble, C. A. Schultz, K. Mopper, “Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques,” Mar. Chem. 41, 173–178 (1993).
[CrossRef]

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
[CrossRef]

Reg. Toxicol. Pharmacol. (1)

R. J. Witorsch, “Endocrine disruptors: can biological effects and environmental risks be predicted?” Reg. Toxicol. Pharmacol. 36, 118–130 (2002).
[CrossRef]

Other (6)

P. G. Coble, J. Boehme, College of Marine Science, University of South Florida, St. Petersburg, Fla. (personal communication, 2000).

R. A. Velapoldi, K. D. Mielenz, A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate (National Bureau of Standards, Washington, D.C., 1979).

D. L. Andrews, Applied Laser Spectroscopy (VCH, New York, 1992).

G. G. Guilbault, Practical Fluorescence (Marcel Dekker, New York, 1973).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic, New York, 1999).
[CrossRef]

R. H. Kingston, Optical Sources, Detectors, and Systems: Fundamentals and Applications (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the experimental setup of the laboratory LIF system in which we use a UV-tunable dye laser or a fixed-wavelength 266-nm laser for excitation.

Fig. 2
Fig. 2

LIF EEM spectra of quinine sulfate for excitation wavelengths ranging from 245 to 270 nm. The spectra were normalized to the input laser energy.

Fig. 3
Fig. 3

LIF EEM spectra of bisphenol-A for excitation wavelengths ranging from 224 to 280 nm. The spectra were normalized to the input laser energy.

Fig. 4
Fig. 4

LIF spectra of seawater (harbor water), river water, and distilled water. The fluorescence near 450 nm is due to DOCs.

Fig. 5
Fig. 5

LIF spectra of various drinking water samples.

Fig. 6
Fig. 6

LIF spectra of various distilled water samples.

Fig. 7
Fig. 7

Fluorescence of plastic zipper bags leached in distilled water for 24 h.

Fig. 8
Fig. 8

Fluorescence of plastic spoons leached in 65 °C distilled water.

Fig. 9
Fig. 9

Fluorescence of distilled water stored in brand 2 plastic container as a function of time.

Fig. 10
Fig. 10

Fluorescence signal of quinine sulfate in sulphuric acid, bisphenol-A in distilled water, and bisphenol-A in seawater plotted as a function of concentration measured with the low-PRF (10-Hz) tunable laser laboratory LIF system. The laser wavelength was 250 nm for quinine sulfate and 228 nm for bisphenol-A.

Fig. 11
Fig. 11

Fluorescence signal of quinine sulfate in sulphuric acid, bisphenol-A in distilled water, and bisphenol-A in seawater plotted as a function of concentration measured with the high-PRF (8-kHz) fixed 266-nm laser laboratory LIF system.

Tables (2)

Tables Icon

Table 1 Specifications of High-PRF Microchip Laser at 266 nm (JDS Uniphase) and the Low-PRF Tunable Laser (Laser Science Inc.) Tuned to 228 nm

Tables Icon

Table 2 Sensitivity Limits of the Tunable and Fixed LIF System and a Commercial Spectrofluorometer, FluoroMax

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NT=NRC2+NDC2+NPC21/2.

Metrics