Abstract

A theoretical model of wavelength modulation spectroscopy that uses a laser diode on a Lorentzian absorption line is presented. This theory describes the general case of a current-modulated semiconductor laser, for which a combined intensity and frequency modulation with an arbitrary phase shift occurs. On the basis of this model, the effect of several modulation parameters on the detected signals is evaluated. Experimental signals measured on an absorption line of CO2 by use of a 2-μm distributed-feedback laser are also presented and validate this analysis. These experimental results agree with the calculated signals, confirming the relevance of the model.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
    [CrossRef] [PubMed]
  2. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  3. J. Reid, B. K. Garside, J. Shewchun, M. El-Sherbiny, E. A. Ballik, “High sensitivity point monitoring of atmospheric gases employing tunable diode lasers,” Appl. Opt. 17, 1806–1810 (1978).
    [CrossRef] [PubMed]
  4. M. Loewenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988).
    [CrossRef]
  5. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
    [CrossRef]
  6. R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 11–22 (1999).
    [CrossRef]
  7. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
    [CrossRef]
  8. D. T. Cassidy, L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 μm,” Appl. Opt. 27, 2688–2693 (1988).
    [CrossRef] [PubMed]
  9. F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
    [CrossRef]
  10. M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
    [CrossRef]
  11. A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, L. Moi, “Diode laser spectroscopy of methane overtone transitions,” Appl. Opt. 32, 5211–5216 (1993).
    [CrossRef] [PubMed]
  12. X. Zhu, D. T. Cassidy, “Modulation spectroscopy with a semiconductor diode laser by injection-current modulation,” J. Opt. Soc. Am. B 14, 1945–1950 (1997).
    [CrossRef]
  13. A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, “Diode laser spectroscopy of overtone bands of acetylene,” Appl. Phys. B 63, 277–282 (1996).
  14. U. Gustafsson, G. Somesfalean, J. Alnis, S. Svanberg, “Frequency-modulation spectroscopy with blue diode lasers,” Appl. Opt. 39, 3774–3780 (2000).
    [CrossRef]
  15. G. Jacobsen, H. Olesen, F. Birkedahl, “Current/frequency-modulation characteristics for directly optical frequency-modulated injection lasers at 830 nm and 1.3 μm,” Electron. Lett. 18, 874–876 (1982).
    [CrossRef]
  16. W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. 20, 1045–1050 (1984).
    [CrossRef]
  17. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
    [CrossRef]
  18. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  19. J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
    [CrossRef] [PubMed]
  20. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
    [CrossRef] [PubMed]
  21. P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
    [CrossRef]
  22. P. Kluczynski, J. Gustafsson, A. Lindberg, O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
    [CrossRef]
  23. P. Kluczynski, A. Lindberg, O. Axner, “Background signals in wavelength-modulation spectrometry with frequency-doubled diode-laser light. I. Theory,” Appl. Opt. 40, 783–793 (2001).
    [CrossRef]
  24. P. Kluczynski, A. Lindberg, O. Axner, “Background signals in wavelength-modulation spectrometry by use of frequency-doubled diode-laser light. II. Experiment,” Appl. Opt. 40, 794–805 (2001).
    [CrossRef]
  25. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  26. W. Lenth, “Optical heterodyne spectroscopy with frequency- and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575–577 (1983).
    [CrossRef] [PubMed]
  27. M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston, “High-frequency-modulation spectroscopy with a lead-salt diode laser,” Opt. Lett. 11, 132–134 (1986).
    [CrossRef] [PubMed]
  28. N.-Y. Chou, W. S. Sachse, “Single-tone and two-tone AM-FM spectral calculations for tunable diode laser absorption spectroscopy,” Appl. Opt. 26, 3584–3587 (1987).
    [CrossRef] [PubMed]
  29. S. Schilt, “Mesure de traces de gaz à l’aide de lasers à semi-conducteur,” Ph.D. dissertation, No. 2525 (Swiss Federal Institute of Technology, Lausanne, Switzerland, 2002).
  30. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]

2001 (4)

2000 (1)

1999 (1)

1998 (2)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[CrossRef]

1997 (2)

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

X. Zhu, D. T. Cassidy, “Modulation spectroscopy with a semiconductor diode laser by injection-current modulation,” J. Opt. Soc. Am. B 14, 1945–1950 (1997).
[CrossRef]

1996 (1)

A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, “Diode laser spectroscopy of overtone bands of acetylene,” Appl. Phys. B 63, 277–282 (1996).

1994 (1)

1993 (3)

1992 (1)

1988 (2)

M. Loewenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988).
[CrossRef]

D. T. Cassidy, L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 μm,” Appl. Opt. 27, 2688–2693 (1988).
[CrossRef] [PubMed]

1987 (1)

1986 (1)

1984 (1)

W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. 20, 1045–1050 (1984).
[CrossRef]

1983 (1)

1982 (2)

G. Jacobsen, H. Olesen, F. Birkedahl, “Current/frequency-modulation characteristics for directly optical frequency-modulated injection lasers at 830 nm and 1.3 μm,” Electron. Lett. 18, 874–876 (1982).
[CrossRef]

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
[CrossRef] [PubMed]

1981 (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

1980 (1)

1978 (1)

1965 (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Alnis, J.

Arndt, R.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Axner, O.

Baillargeon, J. N.

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 11–22 (1999).
[CrossRef]

Ballik, E. A.

Birkedahl, F.

G. Jacobsen, H. Olesen, F. Birkedahl, “Current/frequency-modulation characteristics for directly optical frequency-modulated injection lasers at 830 nm and 1.3 μm,” Electron. Lett. 18, 874–876 (1982).
[CrossRef]

Bjorklund, G. C.

Bomse, D. S.

Bonnell, L. J.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Cai, S.

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Capasso, F.

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[CrossRef]

R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 11–22 (1999).
[CrossRef]

Cassidy, D. T.

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Cho, A. Y.

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[CrossRef]

R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 11–22 (1999).
[CrossRef]

Chou, N.-Y.

Ciucci, A.

A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, “Diode laser spectroscopy of overtone bands of acetylene,” Appl. Phys. B 63, 277–282 (1996).

Corsi, C.

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

De Rosa, M.

A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, “Diode laser spectroscopy of overtone bands of acetylene,” Appl. Phys. B 63, 277–282 (1996).

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

El-Sherbiny, M.

Faist, J.

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Flesch, G. J.

Gabbanini, C.

A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, “Diode laser spectroscopy of overtone bands of acetylene,” Appl. Phys. B 63, 277–282 (1996).

A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, L. Moi, “Diode laser spectroscopy of methane overtone transitions,” Appl. Opt. 32, 5211–5216 (1993).
[CrossRef] [PubMed]

Gabrysch, M.

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Garside, B. K.

Gehrtz, M.

Gmachl, C.

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[CrossRef]

R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 11–22 (1999).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gozzini, S.

A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, “Diode laser spectroscopy of overtone bands of acetylene,” Appl. Phys. B 63, 277–282 (1996).

A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, L. Moi, “Diode laser spectroscopy of methane overtone transitions,” Appl. Opt. 32, 5211–5216 (1993).
[CrossRef] [PubMed]

Gustafsson, J.

P. Kluczynski, J. Gustafsson, A. Lindberg, O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[CrossRef]

Gustafsson, U.

Hanson, R. K.

Hartman, J. S.

R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 11–22 (1999).
[CrossRef]

Hutchinson, A. L.

Inguscio, M.

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

Jacobsen, G.

G. Jacobsen, H. Olesen, F. Birkedahl, “Current/frequency-modulation characteristics for directly optical frequency-modulated injection lasers at 830 nm and 1.3 μm,” Electron. Lett. 18, 874–876 (1982).
[CrossRef]

Johnston, H. S.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kelly, J. F.

R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 11–22 (1999).
[CrossRef]

Kluczynski, P.

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lenth, W.

Lindberg, A.

Loewenstein, M.

M. Loewenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988).
[CrossRef]

Longo, I.

Lucchesini, A.

A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, “Diode laser spectroscopy of overtone bands of acetylene,” Appl. Phys. B 63, 277–282 (1996).

A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, L. Moi, “Diode laser spectroscopy of methane overtone transitions,” Appl. Opt. 32, 5211–5216 (1993).
[CrossRef] [PubMed]

Mandin, J. Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

May, R. D.

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Moi, L.

Namjou, K.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Olesen, H.

G. Jacobsen, H. Olesen, F. Birkedahl, “Current/frequency-modulation characteristics for directly optical frequency-modulated injection lasers at 830 nm and 1.3 μm,” Electron. Lett. 18, 874–876 (1982).
[CrossRef]

Pavone, F. S.

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

Pellicia, D.

A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, “Diode laser spectroscopy of overtone bands of acetylene,” Appl. Phys. B 63, 277–282 (1996).

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Philippe, L. C.

Reid, J.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Sachse, W. S.

Schilt, S.

S. Schilt, “Mesure de traces de gaz à l’aide de lasers à semi-conducteur,” Ph.D. dissertation, No. 2525 (Swiss Federal Institute of Technology, Lausanne, Switzerland, 2002).

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Scott, D. C.

Sharpe, S. W.

R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 11–22 (1999).
[CrossRef]

Shewchun, J.

Silver, J. A.

Sivco, D. L.

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[CrossRef]

R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 11–22 (1999).
[CrossRef]

Somesfalean, G.

Stanton, A. C.

Supplee, J. M.

Svanberg, S.

Swanson, J. E.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Webster, C. R.

Whittaker, E. A.

Williams, R. M.

R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 11–22 (1999).
[CrossRef]

Woodward, W. S.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Young, A. T.

Zhu, X.

Appl. Opt. (13)

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
[CrossRef] [PubMed]

D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

J. Reid, B. K. Garside, J. Shewchun, M. El-Sherbiny, E. A. Ballik, “High sensitivity point monitoring of atmospheric gases employing tunable diode lasers,” Appl. Opt. 17, 1806–1810 (1978).
[CrossRef] [PubMed]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

D. T. Cassidy, L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 μm,” Appl. Opt. 27, 2688–2693 (1988).
[CrossRef] [PubMed]

U. Gustafsson, G. Somesfalean, J. Alnis, S. Svanberg, “Frequency-modulation spectroscopy with blue diode lasers,” Appl. Opt. 39, 3774–3780 (2000).
[CrossRef]

A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, L. Moi, “Diode laser spectroscopy of methane overtone transitions,” Appl. Opt. 32, 5211–5216 (1993).
[CrossRef] [PubMed]

J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
[CrossRef] [PubMed]

L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef] [PubMed]

P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

P. Kluczynski, A. Lindberg, O. Axner, “Background signals in wavelength-modulation spectrometry with frequency-doubled diode-laser light. I. Theory,” Appl. Opt. 40, 783–793 (2001).
[CrossRef]

P. Kluczynski, A. Lindberg, O. Axner, “Background signals in wavelength-modulation spectrometry by use of frequency-doubled diode-laser light. II. Experiment,” Appl. Opt. 40, 794–805 (2001).
[CrossRef]

N.-Y. Chou, W. S. Sachse, “Single-tone and two-tone AM-FM spectral calculations for tunable diode laser absorption spectroscopy,” Appl. Opt. 26, 3584–3587 (1987).
[CrossRef] [PubMed]

Appl. Phys. B (4)

A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, “Diode laser spectroscopy of overtone bands of acetylene,” Appl. Phys. B 63, 277–282 (1996).

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

Electron. Lett. (1)

G. Jacobsen, H. Olesen, F. Birkedahl, “Current/frequency-modulation characteristics for directly optical frequency-modulated injection lasers at 830 nm and 1.3 μm,” Electron. Lett. 18, 874–876 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. 20, 1045–1050 (1984).
[CrossRef]

J. Appl. Phys. (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (2)

M. Loewenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Opt. Lett. (4)

Spectrochim. Acta Part B (1)

P. Kluczynski, J. Gustafsson, A. Lindberg, O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[CrossRef]

Other (2)

S. Schilt, “Mesure de traces de gaz à l’aide de lasers à semi-conducteur,” Ph.D. dissertation, No. 2525 (Swiss Federal Institute of Technology, Lausanne, Switzerland, 2002).

R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 11–22 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Amplitude of the 1f absorption and dispersion signals as a function of the normalized modulation frequency x m = fν line. A pure FM is considered with a FM index β = Δν/f = 1.

Fig. 2
Fig. 2

Theoretical WMS signals at the first three harmonics, showing the derivativelike form of the signals. A pure FM is considered with m = 0.1. The maximum s n,max and the amplitude s n,ampl of the signals are defined for each harmonic.

Fig. 3
Fig. 3

Evolution of (a) the maximum and (b) the amplitude of the WMS signals at the harmonics n = 1 to n = 4 as a function of the modulation index m. Solid curves represent the case of IM-FM with p Ω = -1 (1/cm-1), p ω = -2 (1/cm-1), and Ψ = -90°, whereas the dashed curves represent the case of pure FM. Optimal values of m are indicated by squares in the case of pure FM and by circles for IM-FM. (c) Corresponding WMS signals at the first four harmonics for m = 2 and m = 10. Solid curves correspond to the case of IM-FM, and dashed curves to pure FM.

Fig. 4
Fig. 4

Optimal values of the modulation index m for which the WMS signals reach (a) their maximum and (b) their maximal amplitude at the different harmonics of the modulation frequency. These values are obtained for the IM parameters shown in (c). For some sets of parameters, curves s n,max(m) or s n,ampl(m) may present more than one maximum. In such cases, only the first value is considered. For the parameter set 8, the curve s 1,max(m) does not present any maximum in the range 0 < m < 15 [see also Fig. 3(a)], so there is no point associated with this condition for n = 1 in (a).

Fig. 5
Fig. 5

Normalized amplitude s n,ampl of the signals at the first three harmonics as a function of the detection phase Φ n . The considered parameters are m = 1, p Ω = -1 (1/cm-1), p ω = -2 (1/cm-1), and (a) Ψ = 0 or (b) Ψ = -60 (degrees). The phase Φ n,max that maximizes the signal amplitude is indicated by a circle for each harmonic.

Fig. 6
Fig. 6

Absorption line R16 of CO2 measured with a DFB laser emitting at 2004 nm. The laser frequency was measured with a wavemeter with a resolution of 1 pm. Experimental points are represented by circles, and the curve results from a fit of a Lorentzian distribution.

Fig. 7
Fig. 7

Experimental setup implementing the WMS technique. OAP, off-axis parabolic mirror; BS, beam splitter; DET, detector.

Fig. 8
Fig. 8

(a) Normalized 2f signal for different values of the modulation index m. Both expermental measurements and theoretical curves calculated from the model are represented, but they are indistinguishable owing to their excellent agreement. (b) Maximum (s 2,max) and amplitude (s 2,ampl) of the 2f signal as a function of the modulation index m. Circles are experimental measurements, and curves are the results of the theoretical model.

Fig. 9
Fig. 9

(a) 2f signal for different values of the detection phase Φ2. Both experimental measurements and theoretical curves are represented, but they are indistinguishable owing to their excellent agreement. (b) Amplitude (s 2,ampl) of the 2f signal as a function of the detection phase. Circles are experimental measurements, and the curve is the result of the theoretical model.

Fig. 10
Fig. 10

Effect of the IM on the 2f signal. Experimental curves (in gray) have been obtained for (a) f = 400 Hz, (b) f = 4 kHz, and (c) f = 40 kHz. Theoretical curves calculated from the model are also represented, but they are indistinguishable from the measurements, owing to their excellent agreement. All the signals were obtained for m = 1 and p Ω = -1.05 (1/cm-1).

Tables (2)

Tables Icon

Table 1 Comparison of the Line Parameters Obtained Experimentally and According to the HITRAN Database

Tables Icon

Table 2 Modulation Parameters of the DFB Laser at f = 11 kHz and F = 9.5 Hz

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

s1,abss1,disp0.9xm-1.
νt=ν0-Δνcosωt+Ψ,
it=i0+Δi cos ωt,
It=I0+ΔI cos ωt,
I0x=I0pΔνlinex+1.
tx=I0xexp-axI0x1-ax=I0pΔνlinex+11-ax.
sIM-FMx=I0pΩΔνlinex0-pωΔνlinem cos ωt+1×1-a01+x0-m cosωt+Ψ2.
sIM-FMx=I0n=0 snpxcos nωt-n=0 snqxsin nωt.
snpx=IΩxcos nΨsnx-pΩΔνlinem2n2-n+1×cos nΨsn+1x-pωΔνlinem22n-1×cosn-1Ψsn-1x+n-1cosn+1Ψsn+1x,
snqx=IΩxsin nΨsnx-pΩΔνlinem2n2-n+1×sin nΨsn+1x-pωΔνlinem22n-1×sinn-1Ψsn-1x+n-1sinn+1Ψsn+1x,
IΩx=pΩΔνlinex+1.
s1px=IΩxcos Ψs1x-pωΔνlinem2 ×2s0x+cos 2Ψs2xs1qx=IΩxsin Ψs1x-pωΔνlinem2 ×sin 2Ψs2x,
s2px=IΩxcos 2Ψs2x-pωΔνlinem2 ×cos Ψs1x+cos 3Ψs3xs2qx=IΩxsin 2Ψs2x-pωΔνlinem2 ×sin Ψs1x+sin 3Ψs3x,
s3px=IΩxcos 3Ψs3x-pωΔνlinem2 ×cos 2Ψs2x+cos 4Ψs4xs3qx=IΩxsin 3Ψs3x-pωΔνlinem2 ×sin 2Ψs2x+sin 4Ψs4x.
sn,Φx=I0snpxcos Φn+snqxsin Φn.
Φn,max=nΨ+kπ,
Φn,min=nΨ+2k+1π/2.
sn,Φmaxx=IΩxsnx-pΩΔνlinem2n2-n+1×sn+1x -pωΔνlinem2cos Ψ2n-1sn-1x+n-1sn+1x,
sn,Φminx=pωΔνlinem2sin Ψ2n-1sn-1x+n-1sn+1x.
x=ν-νline/Δνline
t0x=I0 exp-axI01-ax,
ax=LNSgx.
x=x0-m cos ωt,
sx=t0x0-m cos ωt.
sx=n=0 snxcos nωt,
snx=12π-inn-dyJnmyT0yexpixy,
T0y=-dxt0xexp-ixy.
gx=1πΔνline11+x2,
snx=I0Jn0-a02-inn×1-ix2+m2-1-ixnmn1-ix2+m2+c.c.,
a0=a(x=0)=LNS/(πΔνline).
s0x=I01-a022r+Xr,
s1x=I0a02m-xr+X+signxr-Xr,
s2x=I0a0-4m2+2m2×r+1-x2r+X+2|x|r-Xr,
s3x=-I0a0m316x+2rx3-3xr+1r+X+2rsignx1-3x2-3rr-X,
X=1-x2+m2, r=X2+4x2.
sIM-FMx=g1x0-m cosωt+Ψ+g2x0-m cosωt+Ψ,
g1x=I0pΩΔνlinex1-a011+x2=pΩΔνlinext0x,
g2x=CI01-a011+x2=Ct0x,
C=1-2pΩΔνlinem sin Ψ/2 sinωt+Ψ/2+pΩ-pωΔνlinem cos ωt,
G1y=pΩΔνlinei dT0ydy,
G2y=CT0y,
SIM-FMy= dxsIM-FMxexp-ixy=exp-imy cosωt+Ψ×G1y+G2y.
SIM-FMy=G1yn=0-innJnmycosnωt+Ψ=S1y+G2yn=0-innJnmycosnωt+Ψ=S2y.
s1x=12π-dyS1yexpixy=pΩΔνlinei n=0-inn cosnωt+Ψ×12π-dyJnmydT0ydyexpixy,
s2x=12π-dyS2yexpixy=C n=0-inn cosnωt+Ψ×12π-dyJnmyT0yexpixy.

Metrics