Abstract

An analysis is presented on the passive standoff detection and identification of Bacillus subtilis (BG) clouds with the Compact ATmospheric Sounding Interferometer (CATSI) sensor. This research is based on recent spectral measurements obtained during the Technology Readiness Evaluation trial held July 2002 at Dugway Proving Ground, Utah. Results obtained from three trial BG cloud episodes are used to explain and demonstrate the detection capability of the CATSI sensor. The BG clouds were measured at a distance of 3 km from the sensor in a near-horizontal path scenario. It was found that the low thermal contrast of approximately 0.2 K between the BG cloud and the background yielded weak but observable spectral signatures. The processing of the spectral signatures with the GASeous Emission Monitoring (GASEM) algorithm has provided a rough estimate of BG cloud column densities. The results of a series of simulations with the FASCOD3 transmission model have shown that the detection sensitivity for BG can be greatly improved for both slant path uplooking and downlooking scenarios.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription