Abstract

The scalar-field imaging of a hypersonic mixing flow is performed in a mixing facility that is shock tunnel driven. The instantaneous mixture-fraction field of a hypersonic two-dimensional mixing layer (M 1 = 5.1, M 2 = 0.3) is determined with a temperature-insensitive planar laser-induced fluorescence technique with nitric oxide (NO) as the tracer species. Single-shot images are obtained with the broadband excitation of a reduced temperature-sensitivity transition in the A 2+X 2Π1/2 (0, 0) band of NO near 226 nm. The instantaneous mixture-fraction field at a convective Mach number of 2.64 is shown to be nearly identical to a typical diffusive process, supporting the notion of gradient-transport mixing models for highly compressible mixing layers.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
    [CrossRef]
  2. G. Kychakoff, R. D. Howe, R. K. Hanson, “Quantitative flow visualization technique for measurements in combustion gases,” Appl. Opt. 23, 704–712 (1984).
    [CrossRef] [PubMed]
  3. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
    [CrossRef] [PubMed]
  4. M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992).
    [CrossRef]
  5. J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Mudford, S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284–291 (2001).
    [CrossRef]
  6. T. C. Island, “Quantitative scalar measurements and mixing enhancement in compressible shear layers,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1997).
  7. N. T. Clemens, P. H. Paul, “Scalar measurements in compressible axisymmetric mixing layers,” Phys. Fluids 7, 1071–1081 (1995).
    [CrossRef]
  8. B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas-phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994).
    [CrossRef]
  9. H. Hu, M. M. Koochesfahani, “A novel method for instantaneous, quantitative measurement of molecular mixing in gaseous flows,” Exp. Fluids 33, 202–209 (2002).
    [CrossRef]
  10. T. R. Meyer, G. F. King, G. C. Martin, R. P. Lucht, F. R. Schauer, J. C. Dutton, “Accuracy and resolution issues in NO/acetone PLIF measurements of gas-phase molecular mixing,” Exp. Fluids 32, 603–611 (2002).
    [CrossRef]
  11. J. L. Palmer, R. K. Hanson, “Temperature imaging in a supersonic-free jet of combustion gases using two-line OH fluorescence,” Appl. Opt. 35, 485–499 (1996).
    [CrossRef] [PubMed]
  12. B. Hiller, R. K. Hanson, “Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence,” Appl. Opt. 27, 33–48 (1988).
    [CrossRef] [PubMed]
  13. K. P Gross, R. L. McKenzie, P. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987).
    [CrossRef]
  14. N. T. Clemens, M. G. Mungal, “Large-scale structure and entrainment in the supersonic mixing layer,” J. Fluid Mech. 284, 171–216 (1995).
    [CrossRef]
  15. R. K. Hartfield, J. D. Abbitt, J. C. McDaniel, “Injectant mole fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence,” Opt. Lett. 14, 850–852 (1989).
    [CrossRef] [PubMed]
  16. M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the 30th Aerospace Sciences Meeting, Reno, Nev., 6–9 January 1992.
  17. J. C. McDaniel, J. Graves, “Laser-induced fluorescence visualization of transverse gaseous injection in a nonreacting supersonic combustor,” J. Propul. Power 4, 591–597 (1988).
    [CrossRef]
  18. S. O’Byrne, M. Doolan, S. R. Olsen, A. F. P. Houwing, “Measurement and imaging of supersonic combustion in a model scramjet engine,” Shock Waves 9, 221–226 (1999).
    [CrossRef]
  19. I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990).
    [CrossRef]
  20. M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993).
    [CrossRef] [PubMed]
  21. J. M. Seitzman, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in a reacting supersonic flow over a body,” Appl. Phys. B 57, 384–391 (1993).
    [CrossRef]
  22. T. Rossmann, M. G. Mungal, R. K. Hanson, “A new shock-tunnel-driven facility for high compressibility mixing layer studies,” presented at the 37th Aerospace Sciences Meeting, Reno, Nev., 11–14 January 1999.
  23. T. Rossmann, “An experimental investigation of high compressibility mixing layers,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 2001).
  24. D. Papamoschou, A. Roshko, “The compressible turbulent shear layer: an experimental study,” J. Fluid Mech. 197, 453–477 (1988).
    [CrossRef]
  25. P. E. Dimotakis, “Turbulent mixing and combustion,” in High-Speed Flight Propulsion Systems, S. N. B. Murthy, E. T. Curran, eds. (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), Vol. 137, pp. 265–340.
  26. W. G. Bessler, C. S. Shultz, J. B. Jeffries, R. K. Hanson, “Measurements of NO A2∑+ ← X2Π1/2 (1,0), (2,0), and (2,1) fluorescence in high-pressure flames,” Appl. Phys. B 45, 351–362 (2002).
  27. M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperature,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1996).
    [CrossRef]
  28. A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A-X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
    [CrossRef]
  29. R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” LA-4364 UC-34 Physics TID-4500 (Los Alamos Scientific Laboratory, Los Alamos, N. Mex.1970).
  30. R. Freedman, R. W. Nicholls, “Molecular constants for the v″ = 0 (X2Π) and v′ = 0,1 (A2∑+) levels of the NO molecule and its isotopes,” J. Mol. Spectrosc. 83, 223–227 (1980).
    [CrossRef]
  31. C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
    [CrossRef]
  32. K. L. Wray, J. D. Teare, “Shock tube study of the kinetics of nitric oxide at high temperatures,” J. Chem. Phys. 36, 2582–2589 (1962).
    [CrossRef]
  33. R. J. Kee, F. M. Rupley, E. Meeks, J. A. Miller, “Chemkin-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Rep. SAND96–8216 (Sandia National Laboratory, Livermore, Calif., 1996).
  34. H. W. Liepmann, A. Roshko, Elements of Gasdynamics (Wiley, New York, 1957).
  35. G. Kamimoto, H. J. Matsui, “Vibrational relaxation of nitric oxide in argon,” J. Chem. Phys. 53, 3987–3989 (1970).
    [CrossRef]
  36. R. C. Millikan, D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39, 3209–3213 (1963).
    [CrossRef]
  37. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, Berlin, 1982).
  38. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO (A2∑+, ν′ = 0),” Chem. Phys. Lett. 259, 508–514 (1996).
    [CrossRef]
  39. I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A2∑+, ν′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
    [CrossRef]
  40. T. Rossmann, M. G. Mungal, R. K. Hanson, “Character of Mach wave radiation and convection velocity estimation in supersonic shear layers,” presented at the 8th Aeroacoustics Meeting, Boulder, Colo., 17–19 June 2002.
  41. H. Oertel, “Mach wave radiation of hot supersonic jets investigated by means of the shock tube and new optical techniques,” in Proceedings of 12th International Symposium on Shock Tubes and Waves, (Magnes Press, Jerusalem, Israel, 1979), pp. 266–275.
  42. J. O. Berg, W. L. Shackelford, “Rotational redistribution effect on saturated laser-induced fluorescence,” Appl. Opt. 18, 2093–2094 (1979).
    [CrossRef] [PubMed]
  43. T. Rossmann, M. G. Mungal, R. K. Hanson, “Laser-based diagnostics and scalar imaging in high compressibility shear layers,” presented at the 11th Symposium on the Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 8–11 July 2002.
  44. J. W. Daily, “Saturation effects in laser-induced fluorescence spectroscopy,” Appl. Opt. 16, 568–571 (1977).
    [CrossRef] [PubMed]
  45. A. H. Shapiro, The Thermodynamics of Compressible Flow (Wiley, New York, 1963).
  46. J. B. Freund, P. Moin, S. K. Lele, “Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar,” J. Fluid Mech. 421, 269–291 (2000).
    [CrossRef]
  47. R. D. Wagner, “Mean flow and turbulence measurements in a Mach 5 free shear layer,” NASA TN D-7366 (National Aeronautics and Space Administration Langley Research Center, Hampton, Va., 1973).
  48. J. R. Debisschop, O. Chambres, J-P. Bonnet, “Velocity field characteristics in supersonic mixing layers,” Exp. Therm. Fluid Sci. 9, 147–155 (1994).
    [CrossRef]
  49. P. M. Danehy, P. C. Palma, R. R. Boyce, A. F. P. Houwing, “Numerical simulation of laser-induced fluorescence imaging in shock-layer flows,” AIAA J. 35, 715–722 (1999).
    [CrossRef]
  50. D. S. Dowling, P. E. Dimotakis, “Similarity of the concentration field in gas-phase turbulent jets,” J. Fluid Mech. 218, 109–142 (1990).
    [CrossRef]
  51. M. M. Koochesfahani, P. E. Dimotakis, “Mixing and chemical reactions in a turbulent liquid mixing layer,” J. Fluid Mech. 170, 83–112 (1986).
    [CrossRef]
  52. T. Rossmann, M. G. Mungal, R. K. Hanson, “Mixing efficiency measurements using a modified cold chemistry technique,” Exp. Fluids, submitted for publication.

2002 (3)

H. Hu, M. M. Koochesfahani, “A novel method for instantaneous, quantitative measurement of molecular mixing in gaseous flows,” Exp. Fluids 33, 202–209 (2002).
[CrossRef]

T. R. Meyer, G. F. King, G. C. Martin, R. P. Lucht, F. R. Schauer, J. C. Dutton, “Accuracy and resolution issues in NO/acetone PLIF measurements of gas-phase molecular mixing,” Exp. Fluids 32, 603–611 (2002).
[CrossRef]

W. G. Bessler, C. S. Shultz, J. B. Jeffries, R. K. Hanson, “Measurements of NO A2∑+ ← X2Π1/2 (1,0), (2,0), and (2,1) fluorescence in high-pressure flames,” Appl. Phys. B 45, 351–362 (2002).

2001 (1)

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Mudford, S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284–291 (2001).
[CrossRef]

2000 (1)

J. B. Freund, P. Moin, S. K. Lele, “Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar,” J. Fluid Mech. 421, 269–291 (2000).
[CrossRef]

1999 (2)

S. O’Byrne, M. Doolan, S. R. Olsen, A. F. P. Houwing, “Measurement and imaging of supersonic combustion in a model scramjet engine,” Shock Waves 9, 221–226 (1999).
[CrossRef]

P. M. Danehy, P. C. Palma, R. R. Boyce, A. F. P. Houwing, “Numerical simulation of laser-induced fluorescence imaging in shock-layer flows,” AIAA J. 35, 715–722 (1999).
[CrossRef]

1996 (3)

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO (A2∑+, ν′ = 0),” Chem. Phys. Lett. 259, 508–514 (1996).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperature,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1996).
[CrossRef]

J. L. Palmer, R. K. Hanson, “Temperature imaging in a supersonic-free jet of combustion gases using two-line OH fluorescence,” Appl. Opt. 35, 485–499 (1996).
[CrossRef] [PubMed]

1995 (2)

N. T. Clemens, P. H. Paul, “Scalar measurements in compressible axisymmetric mixing layers,” Phys. Fluids 7, 1071–1081 (1995).
[CrossRef]

N. T. Clemens, M. G. Mungal, “Large-scale structure and entrainment in the supersonic mixing layer,” J. Fluid Mech. 284, 171–216 (1995).
[CrossRef]

1994 (2)

B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas-phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994).
[CrossRef]

J. R. Debisschop, O. Chambres, J-P. Bonnet, “Velocity field characteristics in supersonic mixing layers,” Exp. Therm. Fluid Sci. 9, 147–155 (1994).
[CrossRef]

1993 (3)

1992 (3)

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A-X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
[CrossRef]

M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992).
[CrossRef]

1990 (3)

I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990).
[CrossRef]

D. S. Dowling, P. E. Dimotakis, “Similarity of the concentration field in gas-phase turbulent jets,” J. Fluid Mech. 218, 109–142 (1990).
[CrossRef]

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

1989 (1)

1988 (3)

J. C. McDaniel, J. Graves, “Laser-induced fluorescence visualization of transverse gaseous injection in a nonreacting supersonic combustor,” J. Propul. Power 4, 591–597 (1988).
[CrossRef]

D. Papamoschou, A. Roshko, “The compressible turbulent shear layer: an experimental study,” J. Fluid Mech. 197, 453–477 (1988).
[CrossRef]

B. Hiller, R. K. Hanson, “Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence,” Appl. Opt. 27, 33–48 (1988).
[CrossRef] [PubMed]

1987 (1)

K. P Gross, R. L. McKenzie, P. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

1986 (1)

M. M. Koochesfahani, P. E. Dimotakis, “Mixing and chemical reactions in a turbulent liquid mixing layer,” J. Fluid Mech. 170, 83–112 (1986).
[CrossRef]

1984 (1)

1982 (1)

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A2∑+, ν′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

1980 (1)

R. Freedman, R. W. Nicholls, “Molecular constants for the v″ = 0 (X2Π) and v′ = 0,1 (A2∑+) levels of the NO molecule and its isotopes,” J. Mol. Spectrosc. 83, 223–227 (1980).
[CrossRef]

1979 (1)

1977 (1)

1970 (1)

G. Kamimoto, H. J. Matsui, “Vibrational relaxation of nitric oxide in argon,” J. Chem. Phys. 53, 3987–3989 (1970).
[CrossRef]

1963 (1)

R. C. Millikan, D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39, 3209–3213 (1963).
[CrossRef]

1962 (1)

K. L. Wray, J. D. Teare, “Shock tube study of the kinetics of nitric oxide at high temperatures,” J. Chem. Phys. 36, 2582–2589 (1962).
[CrossRef]

Abbitt, J. D.

Allen, M. G.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the 30th Aerospace Sciences Meeting, Reno, Nev., 6–9 January 1992.

Balamonte, V. D.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” LA-4364 UC-34 Physics TID-4500 (Los Alamos Scientific Laboratory, Los Alamos, N. Mex.1970).

Berg, J. O.

Bessler, W. G.

W. G. Bessler, C. S. Shultz, J. B. Jeffries, R. K. Hanson, “Measurements of NO A2∑+ ← X2Π1/2 (1,0), (2,0), and (2,1) fluorescence in high-pressure flames,” Appl. Phys. B 45, 351–362 (2002).

Bonnet, J-P.

J. R. Debisschop, O. Chambres, J-P. Bonnet, “Velocity field characteristics in supersonic mixing layers,” Exp. Therm. Fluid Sci. 9, 147–155 (1994).
[CrossRef]

Boyce, R. R.

P. M. Danehy, P. C. Palma, R. R. Boyce, A. F. P. Houwing, “Numerical simulation of laser-induced fluorescence imaging in shock-layer flows,” AIAA J. 35, 715–722 (1999).
[CrossRef]

Chambres, O.

J. R. Debisschop, O. Chambres, J-P. Bonnet, “Velocity field characteristics in supersonic mixing layers,” Exp. Therm. Fluid Sci. 9, 147–155 (1994).
[CrossRef]

Chang, A. Y.

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A-X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Clemens, N. T.

N. T. Clemens, P. H. Paul, “Scalar measurements in compressible axisymmetric mixing layers,” Phys. Fluids 7, 1071–1081 (1995).
[CrossRef]

N. T. Clemens, M. G. Mungal, “Large-scale structure and entrainment in the supersonic mixing layer,” J. Fluid Mech. 284, 171–216 (1995).
[CrossRef]

Daily, J. W.

Danehy, P. M.

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Mudford, S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284–291 (2001).
[CrossRef]

P. M. Danehy, P. C. Palma, R. R. Boyce, A. F. P. Houwing, “Numerical simulation of laser-induced fluorescence imaging in shock-layer flows,” AIAA J. 35, 715–722 (1999).
[CrossRef]

Davis, S. J.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the 30th Aerospace Sciences Meeting, Reno, Nev., 6–9 January 1992.

Debisschop, J. R.

J. R. Debisschop, O. Chambres, J-P. Bonnet, “Velocity field characteristics in supersonic mixing layers,” Exp. Therm. Fluid Sci. 9, 147–155 (1994).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, Berlin, 1982).

Di Rosa, M. D.

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A-X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Dimotakis, P. E.

D. S. Dowling, P. E. Dimotakis, “Similarity of the concentration field in gas-phase turbulent jets,” J. Fluid Mech. 218, 109–142 (1990).
[CrossRef]

M. M. Koochesfahani, P. E. Dimotakis, “Mixing and chemical reactions in a turbulent liquid mixing layer,” J. Fluid Mech. 170, 83–112 (1986).
[CrossRef]

P. E. Dimotakis, “Turbulent mixing and combustion,” in High-Speed Flight Propulsion Systems, S. N. B. Murthy, E. T. Curran, eds. (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), Vol. 137, pp. 265–340.

DiRosa, M. D.

M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperature,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1996).
[CrossRef]

Doolan, M.

S. O’Byrne, M. Doolan, S. R. Olsen, A. F. P. Houwing, “Measurement and imaging of supersonic combustion in a model scramjet engine,” Shock Waves 9, 221–226 (1999).
[CrossRef]

Dowling, D. S.

D. S. Dowling, P. E. Dimotakis, “Similarity of the concentration field in gas-phase turbulent jets,” J. Fluid Mech. 218, 109–142 (1990).
[CrossRef]

Durant, J. L.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO (A2∑+, ν′ = 0),” Chem. Phys. Lett. 259, 508–514 (1996).
[CrossRef]

Dutton, J. C.

T. R. Meyer, G. F. King, G. C. Martin, R. P. Lucht, F. R. Schauer, J. C. Dutton, “Accuracy and resolution issues in NO/acetone PLIF measurements of gas-phase molecular mixing,” Exp. Fluids 32, 603–611 (2002).
[CrossRef]

Engleman, R.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” LA-4364 UC-34 Physics TID-4500 (Los Alamos Scientific Laboratory, Los Alamos, N. Mex.1970).

Foutter, R. R.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the 30th Aerospace Sciences Meeting, Reno, Nev., 6–9 January 1992.

Fox, J. S.

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Mudford, S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284–291 (2001).
[CrossRef]

Freedman, R.

R. Freedman, R. W. Nicholls, “Molecular constants for the v″ = 0 (X2Π) and v′ = 0,1 (A2∑+) levels of the NO molecule and its isotopes,” J. Mol. Spectrosc. 83, 223–227 (1980).
[CrossRef]

Freund, J. B.

J. B. Freund, P. Moin, S. K. Lele, “Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar,” J. Fluid Mech. 421, 269–291 (2000).
[CrossRef]

Gai, S. L.

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Mudford, S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284–291 (2001).
[CrossRef]

Gaston, M. J.

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Mudford, S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284–291 (2001).
[CrossRef]

Graves, J.

J. C. McDaniel, J. Graves, “Laser-induced fluorescence visualization of transverse gaseous injection in a nonreacting supersonic combustor,” J. Propul. Power 4, 591–597 (1988).
[CrossRef]

Gray, J. A.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO (A2∑+, ν′ = 0),” Chem. Phys. Lett. 259, 508–514 (1996).
[CrossRef]

Gross, K. P

K. P Gross, R. L. McKenzie, P. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

Hanson, R. K.

W. G. Bessler, C. S. Shultz, J. B. Jeffries, R. K. Hanson, “Measurements of NO A2∑+ ← X2Π1/2 (1,0), (2,0), and (2,1) fluorescence in high-pressure flames,” Appl. Phys. B 45, 351–362 (2002).

J. L. Palmer, R. K. Hanson, “Temperature imaging in a supersonic-free jet of combustion gases using two-line OH fluorescence,” Appl. Opt. 35, 485–499 (1996).
[CrossRef] [PubMed]

M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperature,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1996).
[CrossRef]

B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas-phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994).
[CrossRef]

J. M. Seitzman, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in a reacting supersonic flow over a body,” Appl. Phys. B 57, 384–391 (1993).
[CrossRef]

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993).
[CrossRef] [PubMed]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A-X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992).
[CrossRef]

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990).
[CrossRef]

B. Hiller, R. K. Hanson, “Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence,” Appl. Opt. 27, 33–48 (1988).
[CrossRef] [PubMed]

G. Kychakoff, R. D. Howe, R. K. Hanson, “Quantitative flow visualization technique for measurements in combustion gases,” Appl. Opt. 23, 704–712 (1984).
[CrossRef] [PubMed]

T. Rossmann, M. G. Mungal, R. K. Hanson, “Mixing efficiency measurements using a modified cold chemistry technique,” Exp. Fluids, submitted for publication.

T. Rossmann, M. G. Mungal, R. K. Hanson, “Character of Mach wave radiation and convection velocity estimation in supersonic shear layers,” presented at the 8th Aeroacoustics Meeting, Boulder, Colo., 17–19 June 2002.

T. Rossmann, M. G. Mungal, R. K. Hanson, “A new shock-tunnel-driven facility for high compressibility mixing layer studies,” presented at the 37th Aerospace Sciences Meeting, Reno, Nev., 11–14 January 1999.

T. Rossmann, M. G. Mungal, R. K. Hanson, “Laser-based diagnostics and scalar imaging in high compressibility shear layers,” presented at the 11th Symposium on the Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 8–11 July 2002.

Hartfield, R. K.

Hiller, B.

Houwing, A. F. P.

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Mudford, S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284–291 (2001).
[CrossRef]

S. O’Byrne, M. Doolan, S. R. Olsen, A. F. P. Houwing, “Measurement and imaging of supersonic combustion in a model scramjet engine,” Shock Waves 9, 221–226 (1999).
[CrossRef]

P. M. Danehy, P. C. Palma, R. R. Boyce, A. F. P. Houwing, “Numerical simulation of laser-induced fluorescence imaging in shock-layer flows,” AIAA J. 35, 715–722 (1999).
[CrossRef]

Howe, R. D.

Hu, H.

H. Hu, M. M. Koochesfahani, “A novel method for instantaneous, quantitative measurement of molecular mixing in gaseous flows,” Exp. Fluids 33, 202–209 (2002).
[CrossRef]

Island, T. C.

T. C. Island, “Quantitative scalar measurements and mixing enhancement in compressible shear layers,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1997).

Jeffries, J. B.

W. G. Bessler, C. S. Shultz, J. B. Jeffries, R. K. Hanson, “Measurements of NO A2∑+ ← X2Π1/2 (1,0), (2,0), and (2,1) fluorescence in high-pressure flames,” Appl. Phys. B 45, 351–362 (2002).

Kamimoto, G.

G. Kamimoto, H. J. Matsui, “Vibrational relaxation of nitric oxide in argon,” J. Chem. Phys. 53, 3987–3989 (1970).
[CrossRef]

Kee, R. J.

R. J. Kee, F. M. Rupley, E. Meeks, J. A. Miller, “Chemkin-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Rep. SAND96–8216 (Sandia National Laboratory, Livermore, Calif., 1996).

King, G. F.

T. R. Meyer, G. F. King, G. C. Martin, R. P. Lucht, F. R. Schauer, J. C. Dutton, “Accuracy and resolution issues in NO/acetone PLIF measurements of gas-phase molecular mixing,” Exp. Fluids 32, 603–611 (2002).
[CrossRef]

Koochesfahani, M. M.

H. Hu, M. M. Koochesfahani, “A novel method for instantaneous, quantitative measurement of molecular mixing in gaseous flows,” Exp. Fluids 33, 202–209 (2002).
[CrossRef]

M. M. Koochesfahani, P. E. Dimotakis, “Mixing and chemical reactions in a turbulent liquid mixing layer,” J. Fluid Mech. 170, 83–112 (1986).
[CrossRef]

Kruger, C. H.

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
[CrossRef]

Kychakoff, G.

Laudenslager, J. B.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A2∑+, ν′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

Laux, C. O.

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
[CrossRef]

Lee, M. P.

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993).
[CrossRef] [PubMed]

M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992).
[CrossRef]

Legner, H. H.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the 30th Aerospace Sciences Meeting, Reno, Nev., 6–9 January 1992.

Lele, S. K.

J. B. Freund, P. Moin, S. K. Lele, “Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar,” J. Fluid Mech. 421, 269–291 (2000).
[CrossRef]

Liepmann, H. W.

H. W. Liepmann, A. Roshko, Elements of Gasdynamics (Wiley, New York, 1957).

Logan, P.

K. P Gross, R. L. McKenzie, P. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

Lozano, A.

B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas-phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994).
[CrossRef]

I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990).
[CrossRef]

Lucht, R. P.

T. R. Meyer, G. F. King, G. C. Martin, R. P. Lucht, F. R. Schauer, J. C. Dutton, “Accuracy and resolution issues in NO/acetone PLIF measurements of gas-phase molecular mixing,” Exp. Fluids 32, 603–611 (2002).
[CrossRef]

Martin, G. C.

T. R. Meyer, G. F. King, G. C. Martin, R. P. Lucht, F. R. Schauer, J. C. Dutton, “Accuracy and resolution issues in NO/acetone PLIF measurements of gas-phase molecular mixing,” Exp. Fluids 32, 603–611 (2002).
[CrossRef]

Matsui, H. J.

G. Kamimoto, H. J. Matsui, “Vibrational relaxation of nitric oxide in argon,” J. Chem. Phys. 53, 3987–3989 (1970).
[CrossRef]

McDaniel, J. C.

R. K. Hartfield, J. D. Abbitt, J. C. McDaniel, “Injectant mole fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence,” Opt. Lett. 14, 850–852 (1989).
[CrossRef] [PubMed]

J. C. McDaniel, J. Graves, “Laser-induced fluorescence visualization of transverse gaseous injection in a nonreacting supersonic combustor,” J. Propul. Power 4, 591–597 (1988).
[CrossRef]

McDermid, I. S.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A2∑+, ν′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

McKenzie, R. L.

K. P Gross, R. L. McKenzie, P. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

McMillin, B. K.

Meeks, E.

R. J. Kee, F. M. Rupley, E. Meeks, J. A. Miller, “Chemkin-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Rep. SAND96–8216 (Sandia National Laboratory, Livermore, Calif., 1996).

Meyer, T. R.

T. R. Meyer, G. F. King, G. C. Martin, R. P. Lucht, F. R. Schauer, J. C. Dutton, “Accuracy and resolution issues in NO/acetone PLIF measurements of gas-phase molecular mixing,” Exp. Fluids 32, 603–611 (2002).
[CrossRef]

Miller, J. A.

R. J. Kee, F. M. Rupley, E. Meeks, J. A. Miller, “Chemkin-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Rep. SAND96–8216 (Sandia National Laboratory, Livermore, Calif., 1996).

Millikan, R. C.

R. C. Millikan, D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39, 3209–3213 (1963).
[CrossRef]

Moin, P.

J. B. Freund, P. Moin, S. K. Lele, “Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar,” J. Fluid Mech. 421, 269–291 (2000).
[CrossRef]

Mudford, N. R.

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Mudford, S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284–291 (2001).
[CrossRef]

Mungal, M. G.

N. T. Clemens, M. G. Mungal, “Large-scale structure and entrainment in the supersonic mixing layer,” J. Fluid Mech. 284, 171–216 (1995).
[CrossRef]

T. Rossmann, M. G. Mungal, R. K. Hanson, “Laser-based diagnostics and scalar imaging in high compressibility shear layers,” presented at the 11th Symposium on the Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 8–11 July 2002.

T. Rossmann, M. G. Mungal, R. K. Hanson, “A new shock-tunnel-driven facility for high compressibility mixing layer studies,” presented at the 37th Aerospace Sciences Meeting, Reno, Nev., 11–14 January 1999.

T. Rossmann, M. G. Mungal, R. K. Hanson, “Character of Mach wave radiation and convection velocity estimation in supersonic shear layers,” presented at the 8th Aeroacoustics Meeting, Boulder, Colo., 17–19 June 2002.

T. Rossmann, M. G. Mungal, R. K. Hanson, “Mixing efficiency measurements using a modified cold chemistry technique,” Exp. Fluids, submitted for publication.

Nicholls, R. W.

R. Freedman, R. W. Nicholls, “Molecular constants for the v″ = 0 (X2Π) and v′ = 0,1 (A2∑+) levels of the NO molecule and its isotopes,” J. Mol. Spectrosc. 83, 223–227 (1980).
[CrossRef]

O’Byrne, S.

S. O’Byrne, M. Doolan, S. R. Olsen, A. F. P. Houwing, “Measurement and imaging of supersonic combustion in a model scramjet engine,” Shock Waves 9, 221–226 (1999).
[CrossRef]

Oertel, H.

H. Oertel, “Mach wave radiation of hot supersonic jets investigated by means of the shock tube and new optical techniques,” in Proceedings of 12th International Symposium on Shock Tubes and Waves, (Magnes Press, Jerusalem, Israel, 1979), pp. 266–275.

Olsen, S. R.

S. O’Byrne, M. Doolan, S. R. Olsen, A. F. P. Houwing, “Measurement and imaging of supersonic combustion in a model scramjet engine,” Shock Waves 9, 221–226 (1999).
[CrossRef]

Palma, P. C.

P. M. Danehy, P. C. Palma, R. R. Boyce, A. F. P. Houwing, “Numerical simulation of laser-induced fluorescence imaging in shock-layer flows,” AIAA J. 35, 715–722 (1999).
[CrossRef]

Palmer, J. L.

Papamoschou, D.

D. Papamoschou, A. Roshko, “The compressible turbulent shear layer: an experimental study,” J. Fluid Mech. 197, 453–477 (1988).
[CrossRef]

Parker, T. E.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the 30th Aerospace Sciences Meeting, Reno, Nev., 6–9 January 1992.

Paul, P. H.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO (A2∑+, ν′ = 0),” Chem. Phys. Lett. 259, 508–514 (1996).
[CrossRef]

N. T. Clemens, P. H. Paul, “Scalar measurements in compressible axisymmetric mixing layers,” Phys. Fluids 7, 1071–1081 (1995).
[CrossRef]

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

Peek, H. M.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” LA-4364 UC-34 Physics TID-4500 (Los Alamos Scientific Laboratory, Los Alamos, N. Mex.1970).

Rawlins, W. T.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the 30th Aerospace Sciences Meeting, Reno, Nev., 6–9 January 1992.

Reinecke, W. G.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the 30th Aerospace Sciences Meeting, Reno, Nev., 6–9 January 1992.

Roshko, A.

D. Papamoschou, A. Roshko, “The compressible turbulent shear layer: an experimental study,” J. Fluid Mech. 197, 453–477 (1988).
[CrossRef]

H. W. Liepmann, A. Roshko, Elements of Gasdynamics (Wiley, New York, 1957).

Rossmann, T.

T. Rossmann, M. G. Mungal, R. K. Hanson, “Mixing efficiency measurements using a modified cold chemistry technique,” Exp. Fluids, submitted for publication.

T. Rossmann, M. G. Mungal, R. K. Hanson, “Character of Mach wave radiation and convection velocity estimation in supersonic shear layers,” presented at the 8th Aeroacoustics Meeting, Boulder, Colo., 17–19 June 2002.

T. Rossmann, “An experimental investigation of high compressibility mixing layers,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 2001).

T. Rossmann, M. G. Mungal, R. K. Hanson, “A new shock-tunnel-driven facility for high compressibility mixing layer studies,” presented at the 37th Aerospace Sciences Meeting, Reno, Nev., 11–14 January 1999.

T. Rossmann, M. G. Mungal, R. K. Hanson, “Laser-based diagnostics and scalar imaging in high compressibility shear layers,” presented at the 11th Symposium on the Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 8–11 July 2002.

Rouse, P. E.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” LA-4364 UC-34 Physics TID-4500 (Los Alamos Scientific Laboratory, Los Alamos, N. Mex.1970).

Rupley, F. M.

R. J. Kee, F. M. Rupley, E. Meeks, J. A. Miller, “Chemkin-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Rep. SAND96–8216 (Sandia National Laboratory, Livermore, Calif., 1996).

Schauer, F. R.

T. R. Meyer, G. F. King, G. C. Martin, R. P. Lucht, F. R. Schauer, J. C. Dutton, “Accuracy and resolution issues in NO/acetone PLIF measurements of gas-phase molecular mixing,” Exp. Fluids 32, 603–611 (2002).
[CrossRef]

Seitzman, J. M.

J. M. Seitzman, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in a reacting supersonic flow over a body,” Appl. Phys. B 57, 384–391 (1993).
[CrossRef]

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

Shackelford, W. L.

Shapiro, A. H.

A. H. Shapiro, The Thermodynamics of Compressible Flow (Wiley, New York, 1963).

Shultz, C. S.

W. G. Bessler, C. S. Shultz, J. B. Jeffries, R. K. Hanson, “Measurements of NO A2∑+ ← X2Π1/2 (1,0), (2,0), and (2,1) fluorescence in high-pressure flames,” Appl. Phys. B 45, 351–362 (2002).

Teare, J. D.

K. L. Wray, J. D. Teare, “Shock tube study of the kinetics of nitric oxide at high temperatures,” J. Chem. Phys. 36, 2582–2589 (1962).
[CrossRef]

Thoman, J. W.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO (A2∑+, ν′ = 0),” Chem. Phys. Lett. 259, 508–514 (1996).
[CrossRef]

van Cruyningen, I.

I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990).
[CrossRef]

Wagner, R. D.

R. D. Wagner, “Mean flow and turbulence measurements in a Mach 5 free shear layer,” NASA TN D-7366 (National Aeronautics and Space Administration Langley Research Center, Hampton, Va., 1973).

White, D. R.

R. C. Millikan, D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39, 3209–3213 (1963).
[CrossRef]

Wray, K. L.

K. L. Wray, J. D. Teare, “Shock tube study of the kinetics of nitric oxide at high temperatures,” J. Chem. Phys. 36, 2582–2589 (1962).
[CrossRef]

Yip, B.

B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas-phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994).
[CrossRef]

AIAA J. (1)

P. M. Danehy, P. C. Palma, R. R. Boyce, A. F. P. Houwing, “Numerical simulation of laser-induced fluorescence imaging in shock-layer flows,” AIAA J. 35, 715–722 (1999).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (3)

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

J. M. Seitzman, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in a reacting supersonic flow over a body,” Appl. Phys. B 57, 384–391 (1993).
[CrossRef]

W. G. Bessler, C. S. Shultz, J. B. Jeffries, R. K. Hanson, “Measurements of NO A2∑+ ← X2Π1/2 (1,0), (2,0), and (2,1) fluorescence in high-pressure flames,” Appl. Phys. B 45, 351–362 (2002).

Chem. Phys. Lett. (1)

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO (A2∑+, ν′ = 0),” Chem. Phys. Lett. 259, 508–514 (1996).
[CrossRef]

Exp. Fluids (5)

I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990).
[CrossRef]

K. P Gross, R. L. McKenzie, P. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas-phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994).
[CrossRef]

H. Hu, M. M. Koochesfahani, “A novel method for instantaneous, quantitative measurement of molecular mixing in gaseous flows,” Exp. Fluids 33, 202–209 (2002).
[CrossRef]

T. R. Meyer, G. F. King, G. C. Martin, R. P. Lucht, F. R. Schauer, J. C. Dutton, “Accuracy and resolution issues in NO/acetone PLIF measurements of gas-phase molecular mixing,” Exp. Fluids 32, 603–611 (2002).
[CrossRef]

Exp. Therm. Fluid Sci. (1)

J. R. Debisschop, O. Chambres, J-P. Bonnet, “Velocity field characteristics in supersonic mixing layers,” Exp. Therm. Fluid Sci. 9, 147–155 (1994).
[CrossRef]

J. Chem. Phys. (3)

G. Kamimoto, H. J. Matsui, “Vibrational relaxation of nitric oxide in argon,” J. Chem. Phys. 53, 3987–3989 (1970).
[CrossRef]

R. C. Millikan, D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39, 3209–3213 (1963).
[CrossRef]

K. L. Wray, J. D. Teare, “Shock tube study of the kinetics of nitric oxide at high temperatures,” J. Chem. Phys. 36, 2582–2589 (1962).
[CrossRef]

J. Fluid Mech. (5)

J. B. Freund, P. Moin, S. K. Lele, “Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar,” J. Fluid Mech. 421, 269–291 (2000).
[CrossRef]

N. T. Clemens, M. G. Mungal, “Large-scale structure and entrainment in the supersonic mixing layer,” J. Fluid Mech. 284, 171–216 (1995).
[CrossRef]

D. Papamoschou, A. Roshko, “The compressible turbulent shear layer: an experimental study,” J. Fluid Mech. 197, 453–477 (1988).
[CrossRef]

D. S. Dowling, P. E. Dimotakis, “Similarity of the concentration field in gas-phase turbulent jets,” J. Fluid Mech. 218, 109–142 (1990).
[CrossRef]

M. M. Koochesfahani, P. E. Dimotakis, “Mixing and chemical reactions in a turbulent liquid mixing layer,” J. Fluid Mech. 170, 83–112 (1986).
[CrossRef]

J. Mol. Spectrosc. (1)

R. Freedman, R. W. Nicholls, “Molecular constants for the v″ = 0 (X2Π) and v′ = 0,1 (A2∑+) levels of the NO molecule and its isotopes,” J. Mol. Spectrosc. 83, 223–227 (1980).
[CrossRef]

J. Propul. Power (3)

J. C. McDaniel, J. Graves, “Laser-induced fluorescence visualization of transverse gaseous injection in a nonreacting supersonic combustor,” J. Propul. Power 4, 591–597 (1988).
[CrossRef]

M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992).
[CrossRef]

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Mudford, S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284–291 (2001).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (4)

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperature,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1996).
[CrossRef]

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A-X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A2∑+, ν′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

Opt. Lett. (1)

Phys. Fluids (1)

N. T. Clemens, P. H. Paul, “Scalar measurements in compressible axisymmetric mixing layers,” Phys. Fluids 7, 1071–1081 (1995).
[CrossRef]

Shock Waves (1)

S. O’Byrne, M. Doolan, S. R. Olsen, A. F. P. Houwing, “Measurement and imaging of supersonic combustion in a model scramjet engine,” Shock Waves 9, 221–226 (1999).
[CrossRef]

Other (15)

P. E. Dimotakis, “Turbulent mixing and combustion,” in High-Speed Flight Propulsion Systems, S. N. B. Murthy, E. T. Curran, eds. (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), Vol. 137, pp. 265–340.

T. Rossmann, M. G. Mungal, R. K. Hanson, “A new shock-tunnel-driven facility for high compressibility mixing layer studies,” presented at the 37th Aerospace Sciences Meeting, Reno, Nev., 11–14 January 1999.

T. Rossmann, “An experimental investigation of high compressibility mixing layers,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 2001).

T. C. Island, “Quantitative scalar measurements and mixing enhancement in compressible shear layers,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1997).

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the 30th Aerospace Sciences Meeting, Reno, Nev., 6–9 January 1992.

T. Rossmann, M. G. Mungal, R. K. Hanson, “Character of Mach wave radiation and convection velocity estimation in supersonic shear layers,” presented at the 8th Aeroacoustics Meeting, Boulder, Colo., 17–19 June 2002.

H. Oertel, “Mach wave radiation of hot supersonic jets investigated by means of the shock tube and new optical techniques,” in Proceedings of 12th International Symposium on Shock Tubes and Waves, (Magnes Press, Jerusalem, Israel, 1979), pp. 266–275.

A. H. Shapiro, The Thermodynamics of Compressible Flow (Wiley, New York, 1963).

R. D. Wagner, “Mean flow and turbulence measurements in a Mach 5 free shear layer,” NASA TN D-7366 (National Aeronautics and Space Administration Langley Research Center, Hampton, Va., 1973).

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, Berlin, 1982).

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” LA-4364 UC-34 Physics TID-4500 (Los Alamos Scientific Laboratory, Los Alamos, N. Mex.1970).

R. J. Kee, F. M. Rupley, E. Meeks, J. A. Miller, “Chemkin-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Rep. SAND96–8216 (Sandia National Laboratory, Livermore, Calif., 1996).

H. W. Liepmann, A. Roshko, Elements of Gasdynamics (Wiley, New York, 1957).

T. Rossmann, M. G. Mungal, R. K. Hanson, “Mixing efficiency measurements using a modified cold chemistry technique,” Exp. Fluids, submitted for publication.

T. Rossmann, M. G. Mungal, R. K. Hanson, “Laser-based diagnostics and scalar imaging in high compressibility shear layers,” presented at the 11th Symposium on the Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 8–11 July 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of the mixing layer.

Fig. 2
Fig. 2

(a) Shock-tunnel schematic showing all sections and support structures. The driver section is shown at the left along with the driven section at the center of the schematic. (b) Schematic of the mixing section with the wall removed to show the location of pressure taps and optical access along with flow dimensions.

Fig. 3
Fig. 3

NO PLIF imaging setup: HR, high reflector, optimized for the input wavelength and 45° reflection; BS, beam splitter, fused-silica glass slides giving 8% reflection; PD, photodiode, fitted with a phosphor mask to make it sensitive to UV radiation; PMT, photomultiplier tube; Cyl, cylindrical lens for beam expansion; Sph, spherical lens for laser sheet collimation and focusing; SHG, second-harmonic generation; ICCD, intensified charge-coupled device.

Fig. 4
Fig. 4

Excitation spectra of several rotational lines compared with experimentally achieved excitation spectra. A Gaussian laser spectral profile of 0.5 cm-1 is convolved with the molecular line shape (0.2% NO, 99.8% argon at 293 K/380 K and 0.1 atm) in the simulated spectra.

Fig. 5
Fig. 5

(a) Chemical simulation of shock heating 2% NO in argon to 3600 K and 31 atm with nozzle expansion to 0.1 atm. (b) Chemical simulation of shock heating 5% dry air in argon to 3600 K and 31 atm with nozzle expansion to 0.1 atm.

Fig. 6
Fig. 6

Variation of the LIF signal for a NO tracer species pumped by a resonant broad laser pulse at different AX, Q 1 + P 21 rotational transitions as computed with a four-level LIF model. Simulations are performed at 0.1 atm with 2300-ppm NO in 95% argon, 3.9% N2, and 0.8% O2 and are normalized by the maximum signal for each transition to show the applicability of each line for temperature-insensitive imaging.

Fig. 7
Fig. 7

Computation of the relative error in determining the mixture fraction of high-speed side fluid χ H in the shear layer as it mixes with low-speed fluid χ L when an isoquenching environment is not used. The error bars denote the range of errors for 300–600 K.

Fig. 8
Fig. 8

Variation of the LIF signal intensity with changing pressure. The simulations are performed for 2000 ppm of NO in argon at 293 K and compared with experimental static LIF cell data of the same mixture at 293 K.

Fig. 9
Fig. 9

Comparison of the LIF intensity as computed with the four-level LIF model and the weak excitation model to show the effects of saturation in low-pressure flow fields. Experiments are performed at 0.1 atm.

Fig. 10
Fig. 10

Aerodynamic heating effects on the average static temperature compared with temperature acting as a conserved scalar for the mixing layer in this study.

Fig. 11
Fig. 11

Quantification of systematic and random error sources as a function of the actual mixture fraction as computed for the interpretation of instantaneous PLIF images for scalar imaging in the mixing-layer conditions of this study.

Fig. 12
Fig. 12

Single-shot PLIF image of a Mach 4.87 flow over a 21-deg, two-dimensional wedge. Free-stream temperature, 390 K; pressure, 0.1 atm; composition, 95% argon, 4% N2, 0.77% O2, 0.23% NO.

Fig. 13
Fig. 13

Instantaneous single-shot PLIF images with excitation of the NO A 2+X 2Π1/2 (0, 0) J″ = 18.5 transition. The images are 4.3 cm × 4.7 cm (155 × 169 pixels) in size. The conditions of the mixing layer are M c = 2.64, s = 1.03.

Fig. 14
Fig. 14

Instantaneous and frame-averaged PLIF images showing both streamwise and cross-stream cuts of mixture fraction versus distance (in centimeters) along the cut lines indicated.

Fig. 15
Fig. 15

Comparison of the single-shot, frame-averaged, and ideal mixture-fraction profiles of the hypersonic mixing layer studied. The data are plotted versus the normalized cross-stream coordinate (y/δ, where δ is the mixing-layer thickness).

Tables (1)

Tables Icon

Table 1 Comparison of Temperature Range for Temperature-Insensitive Measurements of the Mixture Fraction for Various Lower Rotational States of the A2+X2Π1/2 (0, 0) Band of NO

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Sf=ηoptΩ4π fBTχ PkTdVcB12EνG A21A21+Q21,
Sf  χHϕP, T, χi, where ϕA21A21+all species χiPkT σiTνiT.
Sf  χHPkT G A21A21+all species χiPkT σiTνiT,

Metrics