Abstract

An all solid-state Ti:sapphire laser differential absorption lidar transmitter was developed. This all-solid-state laser provides a compact, robust, and highly reliable laser transmitter for potential application in differential absorption lidar measurements of atmospheric ozone. Two compact, high-energy-pulsed, and injection-seeded Ti:sapphire lasers operating at a pulse repetition frequency of 30 Hz and wavelengths of 867 and 900 nm, with M 2 of 1.3, have been experimentally demonstrated and their properties compared with model results. The output pulse energy was 115 mJ at 867 nm and 105 mJ at 900 nm, with a slope efficiency of 40% and 32%, respectively. At these energies, the beam quality was good enough so that we were able to achieve 30 mJ of ultraviolet laser output at 289 and 300 nm after frequency tripling with two lithium triborate nonlinear crystals.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Goldschmidt, R. J. DeYoung, “An ozone differential absorption lidar (DIAL) receiver system for use on unpiloted atmospheric vehicles,” NASA Tech. Rep. NASA/TM-1999-209716 (National Aeronautics and Space Administration, Washington, D.C., 1999).
  2. R. M. Adams, S. A. Hamilton, B. A. McCarl, “An assessment of economic effect of ozone on U.S. agriculture,” J. Air Pollut. Control Assoc. 35, 938–943 (1985).
    [CrossRef]
  3. W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).
  4. J. M. Pye, “Impact of ozone on the growth and yield of trees—a review,” J. Environ. Qual. 17, 347–360 (1988).
    [CrossRef]
  5. M. Lippmann, “Health effects of ozone: critical review,” J. Air Pollut. Control Assoc. 39, 672–695 (1989).
  6. World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1994, WHO Global Ozone Research and Monitoring Project, Rep. 37, Geneva, Switzerland, 1995 ( http://www.al.noaa.gov/wwwHD/Pubdocs/Assessment94/authors.html) .
  7. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]
  8. G. F. Albercht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3 as a lasing material,” Opt. Commun. 52, 401–404 (1985).
    [CrossRef]
  9. P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy, and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985).
    [CrossRef]
  10. K. F. Wall, A. Sanchez, “Titanium sapphire lasers,” Lincoln Lab. J. 3, 447–462 (1990).
  11. G. A. Rines, P. F. Moulton, “Performance of gain-switched Ti:Al2O3 unstable-resonator laser,” Opt. Lett. 15, 434–436 (1990).
    [CrossRef] [PubMed]
  12. G. A. Rines, P. F. Moulton, J. Harrison, “Solid state laser,” U.S. patent5,235,605 (10August1993).
  13. C. E. Hamilton, “Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision,” Opt. Lett. 17, 728–730 (1992).
    [CrossRef] [PubMed]
  14. T. D. Raymond, V. Smith, “Injection-seeded titanium-doped-sapphire laser,” Opt. Lett. 16, 33–35 (1991).
    [CrossRef] [PubMed]
  15. T. R. Steele, D. C. Gerstenberger, A. Drobshoff, R. W. Wallace, “Broadly tunable high-power operation of an all-solid-state titanium-doped sapphire laser system,” Opt. Lett. 16, 399–401 (1991).
    [CrossRef] [PubMed]
  16. N. Finkelestein, W. R. Lempert, R. B. Miles, “Narrow-linewidth passband filter for ultraviolet rotational Raman imaging,” Opt. Lett. 22, 537–539 (1997).
    [CrossRef]
  17. G. A. Rines, H. H. Zenzie, R. A. Schwarz, Y. Isyanova, P. F. Moulton, “Nonlinear conversion of Ti:sapphire laser wavelengths,” IEEE J. Sel. Top. Quantum Electron. 1, 50–57 (1995).
    [CrossRef]
  18. A. Yu. Dergachev, B. Pati, P. F. Moultin, “Efficient third-harmonic generation with a Ti:sapphire laser,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 96–99.
  19. D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).
  20. A. K. Mohamed, J. A. Pruvost, I. Ribert, M. Lefebvre, E. Rosencher, D. J. Binks, “Laser diode injected intervacity-double Ti:sapphire laser for single-mode tunable UV sources,” IEEE J. Quantum Electron. 37, 290–295 (2001).
    [CrossRef]
  21. J. C. Barnes, “Solid state laser technology development for atmospheric sensing applications,” in Digest of the 19th International Laser Radar Conference (ILRC), U. N. Singh, S. Ismail, G. K. Schwemmer, eds. (National Aeronautics and Space Administration, Washington, D.C., 1998), pp. 619–622.
  22. J. C. Barnes, W. C. Edwards, L. B. Petway, L. G. Wang, “NASA lidar atmospheric sensing experiment’s titanium-doped sapphire tunable laser system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 459–565.
  23. N. P. Barnes, J. C. Barnes, “Injection seeding. I. Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
    [CrossRef]
  24. F. Salin, J. Squier, “Gain guiding in solid-state lasers,” Opt. Lett. 17, 1352–1354 (1992).
    [CrossRef] [PubMed]
  25. F. Salin, F. Estable, E. Mottay, L. Brunel, “High-power, gain guided Ti:AL2O3 laser: theory and experiment,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1993), p. 294.
  26. G. A. Skripko, S. G. Bartoschevich, I. V. Mikhnyuk, I. G. Tarazevich, “LiB3O5, a highly efficient frequency converted for Ti:sapphire lasers,” Opt. Lett. 16, 1726–1728 (1991).
    [CrossRef] [PubMed]
  27. S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
    [CrossRef]
  28. S. P. Velsko, M. Webb, L. Davis, C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
    [CrossRef]
  29. N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finsh, G. A. Rines, “Cavity locked, injection seeded, titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA 96-0177, presented at the Thirty-Fourth Aerospace Science Meeting and Exhibit, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).
  30. W. Marsh, National Aeronautics and Space Administration Langley Research Center, Hampton, Va. (personal communication, xxxx).
  31. J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:Sapphire oscillators,” IEEE J. Quantum Electron. QE-24, 1009–1015 (1988).
    [CrossRef]
  32. W. G. Wagner, B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
    [CrossRef]
  33. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
    [CrossRef]
  34. D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
    [CrossRef]
  35. R. Powell, Physics of Solid-State Laser Materials (American Institute of Physics, New York, 1998).
    [CrossRef]
  36. M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
    [CrossRef]

2001 (1)

A. K. Mohamed, J. A. Pruvost, I. Ribert, M. Lefebvre, E. Rosencher, D. J. Binks, “Laser diode injected intervacity-double Ti:sapphire laser for single-mode tunable UV sources,” IEEE J. Quantum Electron. 37, 290–295 (2001).
[CrossRef]

2000 (1)

D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

1997 (1)

1995 (2)

G. A. Rines, H. H. Zenzie, R. A. Schwarz, Y. Isyanova, P. F. Moulton, “Nonlinear conversion of Ti:sapphire laser wavelengths,” IEEE J. Sel. Top. Quantum Electron. 1, 50–57 (1995).
[CrossRef]

D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

1993 (1)

N. P. Barnes, J. C. Barnes, “Injection seeding. I. Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
[CrossRef]

1992 (2)

1991 (4)

1990 (4)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
[CrossRef]

K. F. Wall, A. Sanchez, “Titanium sapphire lasers,” Lincoln Lab. J. 3, 447–462 (1990).

G. A. Rines, P. F. Moulton, “Performance of gain-switched Ti:Al2O3 unstable-resonator laser,” Opt. Lett. 15, 434–436 (1990).
[CrossRef] [PubMed]

1989 (2)

M. Lippmann, “Health effects of ozone: critical review,” J. Air Pollut. Control Assoc. 39, 672–695 (1989).

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

1988 (2)

J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:Sapphire oscillators,” IEEE J. Quantum Electron. QE-24, 1009–1015 (1988).
[CrossRef]

J. M. Pye, “Impact of ozone on the growth and yield of trees—a review,” J. Environ. Qual. 17, 347–360 (1988).
[CrossRef]

1986 (1)

1985 (3)

G. F. Albercht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3 as a lasing material,” Opt. Commun. 52, 401–404 (1985).
[CrossRef]

P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy, and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985).
[CrossRef]

R. M. Adams, S. A. Hamilton, B. A. McCarl, “An assessment of economic effect of ozone on U.S. agriculture,” J. Air Pollut. Control Assoc. 35, 938–943 (1985).
[CrossRef]

1984 (1)

W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).

1963 (1)

W. G. Wagner, B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
[CrossRef]

Adams, R. M.

R. M. Adams, S. A. Hamilton, B. A. McCarl, “An assessment of economic effect of ozone on U.S. agriculture,” J. Air Pollut. Control Assoc. 35, 938–943 (1985).
[CrossRef]

Albercht, G. F.

G. F. Albercht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3 as a lasing material,” Opt. Commun. 52, 401–404 (1985).
[CrossRef]

Barnes, J. C.

N. P. Barnes, J. C. Barnes, “Injection seeding. I. Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
[CrossRef]

J. C. Barnes, “Solid state laser technology development for atmospheric sensing applications,” in Digest of the 19th International Laser Radar Conference (ILRC), U. N. Singh, S. Ismail, G. K. Schwemmer, eds. (National Aeronautics and Space Administration, Washington, D.C., 1998), pp. 619–622.

J. C. Barnes, W. C. Edwards, L. B. Petway, L. G. Wang, “NASA lidar atmospheric sensing experiment’s titanium-doped sapphire tunable laser system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 459–565.

Barnes, N. P.

N. P. Barnes, J. C. Barnes, “Injection seeding. I. Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
[CrossRef]

Bartoschevich, S. G.

Binks, D. J.

A. K. Mohamed, J. A. Pruvost, I. Ribert, M. Lefebvre, E. Rosencher, D. J. Binks, “Laser diode injected intervacity-double Ti:sapphire laser for single-mode tunable UV sources,” IEEE J. Quantum Electron. 37, 290–295 (2001).
[CrossRef]

D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

Brunel, L.

F. Salin, F. Estable, E. Mottay, L. Brunel, “High-power, gain guided Ti:AL2O3 laser: theory and experiment,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1993), p. 294.

Chen, C.

S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
[CrossRef]

Coyle, D. B.

D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

Cure, W. W.

W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).

Davis, L.

S. P. Velsko, M. Webb, L. Davis, C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

Degnan, J. J.

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

DeShazer, L. G.

J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:Sapphire oscillators,” IEEE J. Quantum Electron. QE-24, 1009–1015 (1988).
[CrossRef]

DeYoung, R. J.

S. Goldschmidt, R. J. DeYoung, “An ozone differential absorption lidar (DIAL) receiver system for use on unpiloted atmospheric vehicles,” NASA Tech. Rep. NASA/TM-1999-209716 (National Aeronautics and Space Administration, Washington, D.C., 1999).

Drobshoff, A.

Edwards, W. C.

J. C. Barnes, W. C. Edwards, L. B. Petway, L. G. Wang, “NASA lidar atmospheric sensing experiment’s titanium-doped sapphire tunable laser system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 459–565.

Eggleston, J. M.

J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:Sapphire oscillators,” IEEE J. Quantum Electron. QE-24, 1009–1015 (1988).
[CrossRef]

G. F. Albercht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3 as a lasing material,” Opt. Commun. 52, 401–404 (1985).
[CrossRef]

Estable, F.

F. Salin, F. Estable, E. Mottay, L. Brunel, “High-power, gain guided Ti:AL2O3 laser: theory and experiment,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1993), p. 294.

Esterowitz, L.

P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy, and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985).
[CrossRef]

Ewing, J. J.

G. F. Albercht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3 as a lasing material,” Opt. Commun. 52, 401–404 (1985).
[CrossRef]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Finkelestein, N.

Finkelstein, N. D.

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finsh, G. A. Rines, “Cavity locked, injection seeded, titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA 96-0177, presented at the Thirty-Fourth Aerospace Science Meeting and Exhibit, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

Finsh, A.

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finsh, G. A. Rines, “Cavity locked, injection seeded, titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA 96-0177, presented at the Thirty-Fourth Aerospace Science Meeting and Exhibit, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

Gerstenberger, D. C.

Golding, P. S.

D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

Goldschmidt, S.

S. Goldschmidt, R. J. DeYoung, “An ozone differential absorption lidar (DIAL) receiver system for use on unpiloted atmospheric vehicles,” NASA Tech. Rep. NASA/TM-1999-209716 (National Aeronautics and Space Administration, Washington, D.C., 1999).

Guerra, D. V.

D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

Hamilton, C. E.

Hamilton, S. A.

R. M. Adams, S. A. Hamilton, B. A. McCarl, “An assessment of economic effect of ozone on U.S. agriculture,” J. Air Pollut. Control Assoc. 35, 938–943 (1985).
[CrossRef]

Harrison, J.

G. A. Rines, P. F. Moulton, J. Harrison, “Solid state laser,” U.S. patent5,235,605 (10August1993).

Heagle, A. S.

W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).

Heck, W. W.

W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).

Heggestad, H. E.

W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).

Huang, C.

S. P. Velsko, M. Webb, L. Davis, C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Isyanova, Y.

G. A. Rines, H. H. Zenzie, R. A. Schwarz, Y. Isyanova, P. F. Moulton, “Nonlinear conversion of Ti:sapphire laser wavelengths,” IEEE J. Sel. Top. Quantum Electron. 1, 50–57 (1995).
[CrossRef]

Kangas, K. W.

J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:Sapphire oscillators,” IEEE J. Quantum Electron. QE-24, 1009–1015 (1988).
[CrossRef]

Kay, R. B.

D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

King, T. A.

D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

Kohut, R. J.

W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).

Kokta, M.

P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy, and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985).
[CrossRef]

Lacovara, P.

P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy, and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985).
[CrossRef]

Lance, W.

W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).

Lefebvre, M.

A. K. Mohamed, J. A. Pruvost, I. Ribert, M. Lefebvre, E. Rosencher, D. J. Binks, “Laser diode injected intervacity-double Ti:sapphire laser for single-mode tunable UV sources,” IEEE J. Quantum Electron. 37, 290–295 (2001).
[CrossRef]

Lempert, W. R.

N. Finkelestein, W. R. Lempert, R. B. Miles, “Narrow-linewidth passband filter for ultraviolet rotational Raman imaging,” Opt. Lett. 22, 537–539 (1997).
[CrossRef]

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finsh, G. A. Rines, “Cavity locked, injection seeded, titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA 96-0177, presented at the Thirty-Fourth Aerospace Science Meeting and Exhibit, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

Lengyel, B. A.

W. G. Wagner, B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
[CrossRef]

Lin, S.

S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
[CrossRef]

Lippmann, M.

M. Lippmann, “Health effects of ozone: critical review,” J. Air Pollut. Control Assoc. 39, 672–695 (1989).

Marsh, W.

W. Marsh, National Aeronautics and Space Administration Langley Research Center, Hampton, Va. (personal communication, xxxx).

McCarl, B. A.

R. M. Adams, S. A. Hamilton, B. A. McCarl, “An assessment of economic effect of ozone on U.S. agriculture,” J. Air Pollut. Control Assoc. 35, 938–943 (1985).
[CrossRef]

Mikhnyuk, I. V.

Miles, R. B.

N. Finkelestein, W. R. Lempert, R. B. Miles, “Narrow-linewidth passband filter for ultraviolet rotational Raman imaging,” Opt. Lett. 22, 537–539 (1997).
[CrossRef]

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finsh, G. A. Rines, “Cavity locked, injection seeded, titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA 96-0177, presented at the Thirty-Fourth Aerospace Science Meeting and Exhibit, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

Mohamed, A. K.

A. K. Mohamed, J. A. Pruvost, I. Ribert, M. Lefebvre, E. Rosencher, D. J. Binks, “Laser diode injected intervacity-double Ti:sapphire laser for single-mode tunable UV sources,” IEEE J. Quantum Electron. 37, 290–295 (2001).
[CrossRef]

Mottay, E.

F. Salin, F. Estable, E. Mottay, L. Brunel, “High-power, gain guided Ti:AL2O3 laser: theory and experiment,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1993), p. 294.

Moultin, P. F.

A. Yu. Dergachev, B. Pati, P. F. Moultin, “Efficient third-harmonic generation with a Ti:sapphire laser,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 96–99.

Moulton, P. F.

G. A. Rines, H. H. Zenzie, R. A. Schwarz, Y. Isyanova, P. F. Moulton, “Nonlinear conversion of Ti:sapphire laser wavelengths,” IEEE J. Sel. Top. Quantum Electron. 1, 50–57 (1995).
[CrossRef]

G. A. Rines, P. F. Moulton, “Performance of gain-switched Ti:Al2O3 unstable-resonator laser,” Opt. Lett. 15, 434–436 (1990).
[CrossRef] [PubMed]

P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
[CrossRef]

G. A. Rines, P. F. Moulton, J. Harrison, “Solid state laser,” U.S. patent5,235,605 (10August1993).

Pati, B.

A. Yu. Dergachev, B. Pati, P. F. Moultin, “Efficient third-harmonic generation with a Ti:sapphire laser,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 96–99.

Petway, L. B.

J. C. Barnes, W. C. Edwards, L. B. Petway, L. G. Wang, “NASA lidar atmospheric sensing experiment’s titanium-doped sapphire tunable laser system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 459–565.

Powell, R.

R. Powell, Physics of Solid-State Laser Materials (American Institute of Physics, New York, 1998).
[CrossRef]

Pruvost, J. A.

A. K. Mohamed, J. A. Pruvost, I. Ribert, M. Lefebvre, E. Rosencher, D. J. Binks, “Laser diode injected intervacity-double Ti:sapphire laser for single-mode tunable UV sources,” IEEE J. Quantum Electron. 37, 290–295 (2001).
[CrossRef]

Pye, J. M.

J. M. Pye, “Impact of ozone on the growth and yield of trees—a review,” J. Environ. Qual. 17, 347–360 (1988).
[CrossRef]

Rawlings, J. O.

W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).

Raymond, T. D.

Ribert, I.

A. K. Mohamed, J. A. Pruvost, I. Ribert, M. Lefebvre, E. Rosencher, D. J. Binks, “Laser diode injected intervacity-double Ti:sapphire laser for single-mode tunable UV sources,” IEEE J. Quantum Electron. 37, 290–295 (2001).
[CrossRef]

Rines, G. A.

G. A. Rines, H. H. Zenzie, R. A. Schwarz, Y. Isyanova, P. F. Moulton, “Nonlinear conversion of Ti:sapphire laser wavelengths,” IEEE J. Sel. Top. Quantum Electron. 1, 50–57 (1995).
[CrossRef]

G. A. Rines, P. F. Moulton, “Performance of gain-switched Ti:Al2O3 unstable-resonator laser,” Opt. Lett. 15, 434–436 (1990).
[CrossRef] [PubMed]

G. A. Rines, P. F. Moulton, J. Harrison, “Solid state laser,” U.S. patent5,235,605 (10August1993).

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finsh, G. A. Rines, “Cavity locked, injection seeded, titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA 96-0177, presented at the Thirty-Fourth Aerospace Science Meeting and Exhibit, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

Rosencher, E.

A. K. Mohamed, J. A. Pruvost, I. Ribert, M. Lefebvre, E. Rosencher, D. J. Binks, “Laser diode injected intervacity-double Ti:sapphire laser for single-mode tunable UV sources,” IEEE J. Quantum Electron. 37, 290–295 (2001).
[CrossRef]

Salin, F.

F. Salin, J. Squier, “Gain guiding in solid-state lasers,” Opt. Lett. 17, 1352–1354 (1992).
[CrossRef] [PubMed]

F. Salin, F. Estable, E. Mottay, L. Brunel, “High-power, gain guided Ti:AL2O3 laser: theory and experiment,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1993), p. 294.

Sanchez, A.

K. F. Wall, A. Sanchez, “Titanium sapphire lasers,” Lincoln Lab. J. 3, 447–462 (1990).

Schwarz, R. A.

G. A. Rines, H. H. Zenzie, R. A. Schwarz, Y. Isyanova, P. F. Moulton, “Nonlinear conversion of Ti:sapphire laser wavelengths,” IEEE J. Sel. Top. Quantum Electron. 1, 50–57 (1995).
[CrossRef]

Skripko, G. A.

Smith, V.

Squier, J.

Steele, T. R.

Sun, Z.

S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
[CrossRef]

Tarazevich, I. G.

Temple, P.

W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).

Velsko, S. P.

S. P. Velsko, M. Webb, L. Davis, C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

Wagner, W. G.

W. G. Wagner, B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
[CrossRef]

Wall, K. F.

K. F. Wall, A. Sanchez, “Titanium sapphire lasers,” Lincoln Lab. J. 3, 447–462 (1990).

Wallace, R. W.

Wang, L. G.

J. C. Barnes, W. C. Edwards, L. B. Petway, L. G. Wang, “NASA lidar atmospheric sensing experiment’s titanium-doped sapphire tunable laser system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 459–565.

Webb, M.

S. P. Velsko, M. Webb, L. Davis, C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

Wu, B.

S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
[CrossRef]

Yu. Dergachev, A.

A. Yu. Dergachev, B. Pati, P. F. Moultin, “Efficient third-harmonic generation with a Ti:sapphire laser,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 96–99.

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Zaragoza, L. J.

W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).

Zenzie, H. H.

G. A. Rines, H. H. Zenzie, R. A. Schwarz, Y. Isyanova, P. F. Moulton, “Nonlinear conversion of Ti:sapphire laser wavelengths,” IEEE J. Sel. Top. Quantum Electron. 1, 50–57 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

IEEE J. Quantum Electron. (6)

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

S. P. Velsko, M. Webb, L. Davis, C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:Sapphire oscillators,” IEEE J. Quantum Electron. QE-24, 1009–1015 (1988).
[CrossRef]

A. K. Mohamed, J. A. Pruvost, I. Ribert, M. Lefebvre, E. Rosencher, D. J. Binks, “Laser diode injected intervacity-double Ti:sapphire laser for single-mode tunable UV sources,” IEEE J. Quantum Electron. 37, 290–295 (2001).
[CrossRef]

N. P. Barnes, J. C. Barnes, “Injection seeding. I. Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
[CrossRef]

P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy, and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. A. Rines, H. H. Zenzie, R. A. Schwarz, Y. Isyanova, P. F. Moulton, “Nonlinear conversion of Ti:sapphire laser wavelengths,” IEEE J. Sel. Top. Quantum Electron. 1, 50–57 (1995).
[CrossRef]

J. Air Pollut. Control Assoc. (3)

R. M. Adams, S. A. Hamilton, B. A. McCarl, “An assessment of economic effect of ozone on U.S. agriculture,” J. Air Pollut. Control Assoc. 35, 938–943 (1985).
[CrossRef]

W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).

M. Lippmann, “Health effects of ozone: critical review,” J. Air Pollut. Control Assoc. 39, 672–695 (1989).

J. Appl. Phys. (2)

S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990).
[CrossRef]

W. G. Wagner, B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
[CrossRef]

J. Environ. Qual. (1)

J. M. Pye, “Impact of ozone on the growth and yield of trees—a review,” J. Environ. Qual. 17, 347–360 (1988).
[CrossRef]

J. Mod. Opt. (1)

D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

Lincoln Lab. J. (1)

K. F. Wall, A. Sanchez, “Titanium sapphire lasers,” Lincoln Lab. J. 3, 447–462 (1990).

Opt. Commun. (1)

G. F. Albercht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3 as a lasing material,” Opt. Commun. 52, 401–404 (1985).
[CrossRef]

Opt. Lett. (7)

Other (10)

F. Salin, F. Estable, E. Mottay, L. Brunel, “High-power, gain guided Ti:AL2O3 laser: theory and experiment,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1993), p. 294.

S. Goldschmidt, R. J. DeYoung, “An ozone differential absorption lidar (DIAL) receiver system for use on unpiloted atmospheric vehicles,” NASA Tech. Rep. NASA/TM-1999-209716 (National Aeronautics and Space Administration, Washington, D.C., 1999).

J. C. Barnes, “Solid state laser technology development for atmospheric sensing applications,” in Digest of the 19th International Laser Radar Conference (ILRC), U. N. Singh, S. Ismail, G. K. Schwemmer, eds. (National Aeronautics and Space Administration, Washington, D.C., 1998), pp. 619–622.

J. C. Barnes, W. C. Edwards, L. B. Petway, L. G. Wang, “NASA lidar atmospheric sensing experiment’s titanium-doped sapphire tunable laser system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 459–565.

R. Powell, Physics of Solid-State Laser Materials (American Institute of Physics, New York, 1998).
[CrossRef]

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finsh, G. A. Rines, “Cavity locked, injection seeded, titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA 96-0177, presented at the Thirty-Fourth Aerospace Science Meeting and Exhibit, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

W. Marsh, National Aeronautics and Space Administration Langley Research Center, Hampton, Va. (personal communication, xxxx).

G. A. Rines, P. F. Moulton, J. Harrison, “Solid state laser,” U.S. patent5,235,605 (10August1993).

World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1994, WHO Global Ozone Research and Monitoring Project, Rep. 37, Geneva, Switzerland, 1995 ( http://www.al.noaa.gov/wwwHD/Pubdocs/Assessment94/authors.html) .

A. Yu. Dergachev, B. Pati, P. F. Moultin, “Efficient third-harmonic generation with a Ti:sapphire laser,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 96–99.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Ti:sapphire laser layout for either 289- or 300-nm wavelength for ozone DIAL atmospheric measurements.

Fig. 2
Fig. 2

Output pulse energy and efficiency of the 867 and 900 nm Ti:sapphire laser as a function of the 532-nm input pulse energy pump laser at 30 Hz.

Fig. 3
Fig. 3

Output pulse energy of the 900-nm Ti:sapphire laser as a function of the input pulse energy of the 532-nm pump laser at 20 and 30 Hz.

Fig. 4
Fig. 4

Temporal profile of the 532-nm pump pulse, seeded and unseeded, Ti:sapphire laser cavity at 900 nm at 400-mJ pump energy.

Fig. 5
Fig. 5

Unseeded Ti:sapphire laser output pulse duration (FWHM) of 30 Hz and buildup time at 900 nm as a function of Ti:sapphire energy.

Fig. 6
Fig. 6

Wavelength spectra of the Ti:sapphire laser cavity with and without injection seeding. Also shown is the seeder diode laser spectrum alone.

Fig. 7
Fig. 7

(a) Near-field spatial profile of the 532-nm pump laser at 30 Hz taken for 450-mJ laser output energy. The 1/e 2 diameter is 9.5 mm. (b) Near-field spatial profile of the 900-nm diode seeder laser taken at 5-mW laser output power. The 1/e 2 diameters in x and y are 1.8 mm and 2.2 mm, respectively. (c) Near-field spatial profile of 900-nm unseeded Ti:sapphire laser taken for 110-mJ output energy (30 Hz). The 1/e 2 diameter is 1.8 mm. (d) Near-field spatial profile of the 900-nm seeded Ti:sapphire laser taken for 100-mJ output energy (30 Hz). The 1/e 2 diameter is 1.8 mm.

Fig. 8
Fig. 8

Focal length of a thermal lens as a function of the 532-nm pump energy.

Fig. 9
Fig. 9

Doubled Ti:sapphire laser energy at 433.5 or 450 nm and energy conversion efficiency versus the fundamental at 867- or 900-nm laser energy. Solid curves are the output energy at 433.5 or 450 nm and dashed-dotted curves are the conversion efficiency from the fundamental to 433.5 or 900 nm.

Fig. 10
Fig. 10

UV laser energy at 289 or 300 nm and energy conversion efficiency versus the 867- or 900-nm Ti:sapphire energy. Solid curves are the output energy at 289 or 300 nm and the dashed curves are the conversion efficiency from the fundamental to 289 or 300 nm.

Fig. 11
Fig. 11

Energy level diagram for the four-level laser that describes the operation of the Ti:sapphire laser.

Fig. 12
Fig. 12

Simulated output pulse of the Ti:sapphire laser at 900 nm, with a pump energy of 450 mJ for measured (dashed curve) and simulated (solid curve) results. The measured output energy and pulse width are 137 mJ and 16 ns, respectively, whereas the calculated output energy and pulse width are 141 mJ and 15.9 ns, respectively.

Fig. 13
Fig. 13

Measured and calculated pulse energy output of the Ti:sapphire laser at 900 nm and a 30-Hz repetition rate as a function of the 532-nm pump energy at different temperatures. The solid curve is the model prediction and the squares are the experimental results.

Fig. 14
Fig. 14

Pulse width of the Ti:sapphire laser as a function of the Ti:sapphire output energy at 900 nm. The solid curve is the model prediction and the squares are the experimental results.

Fig. 15
Fig. 15

Thermal focal length as a function of the 532-nm pump average power.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1fth=1fg-1fL,
dndt=-γcσsenϕ,
dϕdt=cσsenϕ-wLϕ,
n=Est/EpVxL.
g0=σsn.
τf-1=τr-1+βexpΔE/kB-1,
Eout=ϕi1-R1ELAcΔt,
feff=πKcωp2Pphdn/dT1-exp(-αl-1,

Metrics