Abstract

We present a simple modulation-free technique to stabilize a laser frequency to the Doppler-free spectra of an atomic vapor. Polarization spectroscopy with use of a balanced polarimeter allows us to obtain a background-free dispersion signal suitable for high-speed and robust frequency stabilization. We employed the method to the 5S1/2 F = 2 → 5P3/2 F′ = 3 transition of 87Rb atoms. The achieved feedback bandwidth was approximately 100 kHz, and an efficient suppression of the frequency noise in a laboratory environment was attained.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  2. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), chap. 14.
  3. U. Tanaka, T. Yabuzaki, “Frequency stabilization of diode laser using external cavity and Doppler-free atomic spectra,” Jpn. J. Appl. Phys. 33, 1614–1622 (1994).
    [CrossRef]
  4. T. Mitsui, K. Yamashita, K. Sakurai, “Diode laser-frequency stabilization by use of frequency modulation by a vibrating mirror,” Appl. Opt. 36, 5494–5498 (1997).
    [CrossRef] [PubMed]
  5. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998).
    [CrossRef]
  6. V. V. Yashchuk, D. Budker, J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000).
    [CrossRef]
  7. C. I. Sukenik, H. C. Busch, M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133–137 (2002).
    [CrossRef]
  8. C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
    [CrossRef]
  9. J. B. Kim, H. J. Kong, S. S. Lee, “Dye laser frequency locking to the hyperfine structure (3S1/2, F = 2 - 3P1/2, F = 2) of sodium D1 line by using polarization spectroscopy,” Appl. Phys. Lett. 52, 417–419 (1988).
    [CrossRef]
  10. G. P. T. Lancaster, R. S. Conroy, M. A. Clifford, J. Arlt, K. Dholakia, “A polarisation spectrometer locked diode laser for trapping cold atoms,” Opt. Commun. 170, 79–84 (1999).
    [CrossRef]
  11. W. Demtröder, Laser Spectroscopy (Springer, Berlin, 1981), chap. 7.
    [CrossRef]
  12. C. Delsart, J.-C. Keller, “Laser-induced dichroism and birefringence in two- and three-level systems of neon,” J. Appl. Phys. 49, 3662–3666 (1978).
    [CrossRef]
  13. C. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Boston, 1988), chap. 7.
    [CrossRef]
  14. The numerator Δnk0L represents the relative phase difference between the two circularly polarized components.
  15. D. Budker, D. J. Orlando, V. Yashchuk, “Nonlinear laser spectroscopy and magneto-optics,” Am. J. Phys. 67, 584–592 (1999).
    [CrossRef]
  16. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
    [CrossRef]
  17. Although the optical density of the saturated absorption α̅L was ∼0.3 in the actual experiment, Eq. (2) still represents an almost-pure dispersion signal.
  18. S. Nakayama, “Polarization spectroscopy of Rb and Cs,” Opt. Commun. 50, 19–25 (1984).
    [CrossRef]
  19. For the F = 2 → F′ = 1 transition, the |2, 1〉 sublevel is also the pumped state of the σ+-polarized light. However, the qualitative discussion in the context is still valid when the atoms are populated in both |2, 2〉 and |2, 1〉 sublevels.
  20. L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode laser,” Opt. Commun. 201, 391–397 (2002).
    [CrossRef]
  21. C. P. Pearman, C. S. Adams, S. G. Fox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
    [CrossRef]
  22. Y. Sasaki, K. Ito, Y. Yoshikawa, K. Kondo, Y. Torii, T. Kuwamoto, T. Hirano, “Department of a narrow band high power laser system using a broad-area diode laser,” in Meeting Abstracts of the Physical Society of Japan (Physical Society of Japan, Tokyo, 2001), Vol. 56, p. 93.

2002

C. I. Sukenik, H. C. Busch, M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133–137 (2002).
[CrossRef]

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode laser,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Fox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

2000

V. V. Yashchuk, D. Budker, J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000).
[CrossRef]

1999

D. Budker, D. J. Orlando, V. Yashchuk, “Nonlinear laser spectroscopy and magneto-optics,” Am. J. Phys. 67, 584–592 (1999).
[CrossRef]

G. P. T. Lancaster, R. S. Conroy, M. A. Clifford, J. Arlt, K. Dholakia, “A polarisation spectrometer locked diode laser for trapping cold atoms,” Opt. Commun. 170, 79–84 (1999).
[CrossRef]

1998

1997

1994

U. Tanaka, T. Yabuzaki, “Frequency stabilization of diode laser using external cavity and Doppler-free atomic spectra,” Jpn. J. Appl. Phys. 33, 1614–1622 (1994).
[CrossRef]

1988

J. B. Kim, H. J. Kong, S. S. Lee, “Dye laser frequency locking to the hyperfine structure (3S1/2, F = 2 - 3P1/2, F = 2) of sodium D1 line by using polarization spectroscopy,” Appl. Phys. Lett. 52, 417–419 (1988).
[CrossRef]

1984

S. Nakayama, “Polarization spectroscopy of Rb and Cs,” Opt. Commun. 50, 19–25 (1984).
[CrossRef]

1980

1978

C. Delsart, J.-C. Keller, “Laser-induced dichroism and birefringence in two- and three-level systems of neon,” J. Appl. Phys. 49, 3662–3666 (1978).
[CrossRef]

1976

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Adams, C. S.

C. P. Pearman, C. S. Adams, S. G. Fox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Arlt, J.

G. P. T. Lancaster, R. S. Conroy, M. A. Clifford, J. Arlt, K. Dholakia, “A polarisation spectrometer locked diode laser for trapping cold atoms,” Opt. Commun. 170, 79–84 (1999).
[CrossRef]

Bjorklund, G. C.

Budker, D.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

V. V. Yashchuk, D. Budker, J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000).
[CrossRef]

D. Budker, D. J. Orlando, V. Yashchuk, “Nonlinear laser spectroscopy and magneto-optics,” Am. J. Phys. 67, 584–592 (1999).
[CrossRef]

Busch, H. C.

C. I. Sukenik, H. C. Busch, M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133–137 (2002).
[CrossRef]

Clifford, M. A.

G. P. T. Lancaster, R. S. Conroy, M. A. Clifford, J. Arlt, K. Dholakia, “A polarisation spectrometer locked diode laser for trapping cold atoms,” Opt. Commun. 170, 79–84 (1999).
[CrossRef]

Conroy, R. S.

G. P. T. Lancaster, R. S. Conroy, M. A. Clifford, J. Arlt, K. Dholakia, “A polarisation spectrometer locked diode laser for trapping cold atoms,” Opt. Commun. 170, 79–84 (1999).
[CrossRef]

Corwin, K. L.

Davis, J. R.

V. V. Yashchuk, D. Budker, J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000).
[CrossRef]

Delsart, C.

C. Delsart, J.-C. Keller, “Laser-induced dichroism and birefringence in two- and three-level systems of neon,” J. Appl. Phys. 49, 3662–3666 (1978).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy (Springer, Berlin, 1981), chap. 7.
[CrossRef]

Dholakia, K.

G. P. T. Lancaster, R. S. Conroy, M. A. Clifford, J. Arlt, K. Dholakia, “A polarisation spectrometer locked diode laser for trapping cold atoms,” Opt. Commun. 170, 79–84 (1999).
[CrossRef]

Epstein, R. J.

Fox, S. G.

C. P. Pearman, C. S. Adams, S. G. Fox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Gawlik, W.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Griffin, P. F.

C. P. Pearman, C. S. Adams, S. G. Fox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Hand, C. F.

Hänsch, T. W.

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Hawthorn, C. J.

L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode laser,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

Hirano, T.

Y. Sasaki, K. Ito, Y. Yoshikawa, K. Kondo, Y. Torii, T. Kuwamoto, T. Hirano, “Department of a narrow band high power laser system using a broad-area diode laser,” in Meeting Abstracts of the Physical Society of Japan (Physical Society of Japan, Tokyo, 2001), Vol. 56, p. 93.

Hughes, I. G.

C. P. Pearman, C. S. Adams, S. G. Fox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Ito, K.

Y. Sasaki, K. Ito, Y. Yoshikawa, K. Kondo, Y. Torii, T. Kuwamoto, T. Hirano, “Department of a narrow band high power laser system using a broad-area diode laser,” in Meeting Abstracts of the Physical Society of Japan (Physical Society of Japan, Tokyo, 2001), Vol. 56, p. 93.

Keller, J.-C.

C. Delsart, J.-C. Keller, “Laser-induced dichroism and birefringence in two- and three-level systems of neon,” J. Appl. Phys. 49, 3662–3666 (1978).
[CrossRef]

Kim, J. B.

J. B. Kim, H. J. Kong, S. S. Lee, “Dye laser frequency locking to the hyperfine structure (3S1/2, F = 2 - 3P1/2, F = 2) of sodium D1 line by using polarization spectroscopy,” Appl. Phys. Lett. 52, 417–419 (1988).
[CrossRef]

Kimball, D. F.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Kondo, K.

Y. Sasaki, K. Ito, Y. Yoshikawa, K. Kondo, Y. Torii, T. Kuwamoto, T. Hirano, “Department of a narrow band high power laser system using a broad-area diode laser,” in Meeting Abstracts of the Physical Society of Japan (Physical Society of Japan, Tokyo, 2001), Vol. 56, p. 93.

Kong, H. J.

J. B. Kim, H. J. Kong, S. S. Lee, “Dye laser frequency locking to the hyperfine structure (3S1/2, F = 2 - 3P1/2, F = 2) of sodium D1 line by using polarization spectroscopy,” Appl. Phys. Lett. 52, 417–419 (1988).
[CrossRef]

Kuwamoto, T.

Y. Sasaki, K. Ito, Y. Yoshikawa, K. Kondo, Y. Torii, T. Kuwamoto, T. Hirano, “Department of a narrow band high power laser system using a broad-area diode laser,” in Meeting Abstracts of the Physical Society of Japan (Physical Society of Japan, Tokyo, 2001), Vol. 56, p. 93.

Lancaster, G. P. T.

G. P. T. Lancaster, R. S. Conroy, M. A. Clifford, J. Arlt, K. Dholakia, “A polarisation spectrometer locked diode laser for trapping cold atoms,” Opt. Commun. 170, 79–84 (1999).
[CrossRef]

Lee, S. S.

J. B. Kim, H. J. Kong, S. S. Lee, “Dye laser frequency locking to the hyperfine structure (3S1/2, F = 2 - 3P1/2, F = 2) of sodium D1 line by using polarization spectroscopy,” Appl. Phys. Lett. 52, 417–419 (1988).
[CrossRef]

Lu, Z.-T.

Mitsui, T.

Nakayama, S.

S. Nakayama, “Polarization spectroscopy of Rb and Cs,” Opt. Commun. 50, 19–25 (1984).
[CrossRef]

Orlando, D. J.

D. Budker, D. J. Orlando, V. Yashchuk, “Nonlinear laser spectroscopy and magneto-optics,” Am. J. Phys. 67, 584–592 (1999).
[CrossRef]

Pearman, C. P.

C. P. Pearman, C. S. Adams, S. G. Fox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Petermann, C.

C. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Boston, 1988), chap. 7.
[CrossRef]

Rochester, S. M.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Sakurai, K.

Sasaki, Y.

Y. Sasaki, K. Ito, Y. Yoshikawa, K. Kondo, Y. Torii, T. Kuwamoto, T. Hirano, “Department of a narrow band high power laser system using a broad-area diode laser,” in Meeting Abstracts of the Physical Society of Japan (Physical Society of Japan, Tokyo, 2001), Vol. 56, p. 93.

Scholten, R. E.

L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode laser,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

Shiddiq, M.

C. I. Sukenik, H. C. Busch, M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133–137 (2002).
[CrossRef]

Smith, D. A.

C. P. Pearman, C. S. Adams, S. G. Fox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Sukenik, C. I.

C. I. Sukenik, H. C. Busch, M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133–137 (2002).
[CrossRef]

Tanaka, U.

U. Tanaka, T. Yabuzaki, “Frequency stabilization of diode laser using external cavity and Doppler-free atomic spectra,” Jpn. J. Appl. Phys. 33, 1614–1622 (1994).
[CrossRef]

Torii, Y.

Y. Sasaki, K. Ito, Y. Yoshikawa, K. Kondo, Y. Torii, T. Kuwamoto, T. Hirano, “Department of a narrow band high power laser system using a broad-area diode laser,” in Meeting Abstracts of the Physical Society of Japan (Physical Society of Japan, Tokyo, 2001), Vol. 56, p. 93.

Turner, L. D.

L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode laser,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

Weber, K. P.

L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode laser,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

Weis, A.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Wieman, C.

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Wieman, C. E.

Yabuzaki, T.

U. Tanaka, T. Yabuzaki, “Frequency stabilization of diode laser using external cavity and Doppler-free atomic spectra,” Jpn. J. Appl. Phys. 33, 1614–1622 (1994).
[CrossRef]

Yamashita, K.

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), chap. 14.

Yashchuk, V.

D. Budker, D. J. Orlando, V. Yashchuk, “Nonlinear laser spectroscopy and magneto-optics,” Am. J. Phys. 67, 584–592 (1999).
[CrossRef]

Yashchuk, V. V.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

V. V. Yashchuk, D. Budker, J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000).
[CrossRef]

Yoshikawa, Y.

Y. Sasaki, K. Ito, Y. Yoshikawa, K. Kondo, Y. Torii, T. Kuwamoto, T. Hirano, “Department of a narrow band high power laser system using a broad-area diode laser,” in Meeting Abstracts of the Physical Society of Japan (Physical Society of Japan, Tokyo, 2001), Vol. 56, p. 93.

Am. J. Phys.

D. Budker, D. J. Orlando, V. Yashchuk, “Nonlinear laser spectroscopy and magneto-optics,” Am. J. Phys. 67, 584–592 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. B. Kim, H. J. Kong, S. S. Lee, “Dye laser frequency locking to the hyperfine structure (3S1/2, F = 2 - 3P1/2, F = 2) of sodium D1 line by using polarization spectroscopy,” Appl. Phys. Lett. 52, 417–419 (1988).
[CrossRef]

J. Appl. Phys.

C. Delsart, J.-C. Keller, “Laser-induced dichroism and birefringence in two- and three-level systems of neon,” J. Appl. Phys. 49, 3662–3666 (1978).
[CrossRef]

J. Phys. B

C. P. Pearman, C. S. Adams, S. G. Fox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Jpn. J. Appl. Phys.

U. Tanaka, T. Yabuzaki, “Frequency stabilization of diode laser using external cavity and Doppler-free atomic spectra,” Jpn. J. Appl. Phys. 33, 1614–1622 (1994).
[CrossRef]

Opt. Commun.

L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode laser,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

S. Nakayama, “Polarization spectroscopy of Rb and Cs,” Opt. Commun. 50, 19–25 (1984).
[CrossRef]

G. P. T. Lancaster, R. S. Conroy, M. A. Clifford, J. Arlt, K. Dholakia, “A polarisation spectrometer locked diode laser for trapping cold atoms,” Opt. Commun. 170, 79–84 (1999).
[CrossRef]

C. I. Sukenik, H. C. Busch, M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133–137 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Rev. Mod. Phys.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Rev. Sci. Instrum.

V. V. Yashchuk, D. Budker, J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000).
[CrossRef]

Other

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), chap. 14.

W. Demtröder, Laser Spectroscopy (Springer, Berlin, 1981), chap. 7.
[CrossRef]

Although the optical density of the saturated absorption α̅L was ∼0.3 in the actual experiment, Eq. (2) still represents an almost-pure dispersion signal.

C. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Boston, 1988), chap. 7.
[CrossRef]

The numerator Δnk0L represents the relative phase difference between the two circularly polarized components.

For the F = 2 → F′ = 1 transition, the |2, 1〉 sublevel is also the pumped state of the σ+-polarized light. However, the qualitative discussion in the context is still valid when the atoms are populated in both |2, 2〉 and |2, 1〉 sublevels.

Y. Sasaki, K. Ito, Y. Yoshikawa, K. Kondo, Y. Torii, T. Kuwamoto, T. Hirano, “Department of a narrow band high power laser system using a broad-area diode laser,” in Meeting Abstracts of the Physical Society of Japan (Physical Society of Japan, Tokyo, 2001), Vol. 56, p. 93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. ECLD, external cavity laser diode; BS, beam splitter; λ/4, quarter-wave plate; λ/2, half-wave plate; and PBS, polarization beam splitter.

Fig. 2
Fig. 2

The Doppler-free spectra of 5S1/2 F = 2 → 5P3/2 F′ transition of 87Rb atoms acquired by (A) polarization spectroscopy and (B) saturated-absorption spectroscopy. The dashed line indicates a ground level of the detector. An enlarged signal of the F = 2 → F′ = 3 transition is shown in the inset to indicate the relative position of the two traces.

Fig. 3
Fig. 3

The ground-state population pumped by the σ+-polarized light for F = 2 to (a) F′ = 3, (b) F′ = 2, and (c) F′ = 1 transitions of 87Rb atoms. The arrows and nearby numbers indicate the σ± transitions and their relative strength, respectively.

Fig. 4
Fig. 4

(a) Monitor trace of the output of the balanced polarimeter with and without feedback. The laser frequency was initially tuned around the center of the F = 2 → F′ = 3 transition. (b) Allan variance of the output signal of the polarimeter when the feedback is active.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Itϕ=I0 exp-α¯Lsin2 ϕ+Δθ sin 2ϕ+Δθ2+ΔαL42cos2 ϕ,
ΔIt=It45°-It-45°=2I0 exp-α¯LΔθ.

Metrics