Abstract

We describe a novel method that operates a laser diode with dual colors. Our system requires no external optical parts but does require current and temperature control. We can use either a single color on a time-sharing basis or dual colors simultaneously. The difference between the wavelengths is ∼0.6 nm, which is as much as 10 times that generated by current control alone. Temporal stability of the generated two wavelengths and the response time of the wavelength change were confirmed through a number of experiments.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. den Boef, “Two-wavelength scanning spot interferometer using single-frequency diode lasers,” Appl. Opt. 27, 306–311 (1988).
    [CrossRef]
  2. C. C. Williams, K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
    [CrossRef]
  3. T. Suzuki, O. Sasaki, T. Maruyama, “Absolute distance measurement using wavelength-multiplexed phase-locked laser diode interferometry,” Opt. Eng. 35, 492–497 (1996).
    [CrossRef]
  4. K. Tatsuno, Y. Tsunoda, “Diode laser direct modulation heterodyne interferometer,” Appl. Opt. 26, 37–40 (1987).
    [CrossRef] [PubMed]
  5. Y. Ishii, J. Chen, K. Murata, “Digital phase-measuring interferometry with a tunable laser diode,” Opt. Lett. 12, 233–235 (1987).
    [CrossRef] [PubMed]
  6. Y. Sidorin, D. Howe, “Laser-diode wavelength tuning based on butt coupling into an optical fiber,” Opt. Lett. 22, 802–804 (1997).
    [CrossRef] [PubMed]
  7. J. Struckmeier, A. Euteneuer, B. Smarsly, M. Breede, M. Born, M. Hofmann, L. Hildebrand, J. Sacher, “Electronically tunable external-cavity laser diode,” Opt. Lett. 24, 1573–1574 (1999).
    [CrossRef]

1999 (1)

1997 (1)

1996 (1)

T. Suzuki, O. Sasaki, T. Maruyama, “Absolute distance measurement using wavelength-multiplexed phase-locked laser diode interferometry,” Opt. Eng. 35, 492–497 (1996).
[CrossRef]

1988 (1)

1987 (2)

1986 (1)

C. C. Williams, K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

Born, M.

Breede, M.

Chen, J.

den Boef, A. J.

Euteneuer, A.

Hildebrand, L.

Hofmann, M.

Howe, D.

Ishii, Y.

Maruyama, T.

T. Suzuki, O. Sasaki, T. Maruyama, “Absolute distance measurement using wavelength-multiplexed phase-locked laser diode interferometry,” Opt. Eng. 35, 492–497 (1996).
[CrossRef]

Murata, K.

Sacher, J.

Sasaki, O.

T. Suzuki, O. Sasaki, T. Maruyama, “Absolute distance measurement using wavelength-multiplexed phase-locked laser diode interferometry,” Opt. Eng. 35, 492–497 (1996).
[CrossRef]

Sidorin, Y.

Smarsly, B.

Struckmeier, J.

Suzuki, T.

T. Suzuki, O. Sasaki, T. Maruyama, “Absolute distance measurement using wavelength-multiplexed phase-locked laser diode interferometry,” Opt. Eng. 35, 492–497 (1996).
[CrossRef]

Tatsuno, K.

Tsunoda, Y.

Wickramasinghe, K.

C. C. Williams, K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

Williams, C. C.

C. C. Williams, K. Wickramasinghe, “Optical ranging by wavelength multiplexed interferometry,” J. Appl. Phys. 60, 1900–1903 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dependency of the LD’s wavelength change on the injection current.

Fig. 2
Fig. 2

Schematic of the experimental setup. OSC, oscillator; BSs, beam splitters; M, mirrors; PH, pin hole; A/D, analog-to-digital converter; PD, photodiode; CCD, CCD camera; GP-IB, general purpose interface bus.

Fig. 3
Fig. 3

Measured dependencies of the wavelength change of (a) LD1 (685 nm) and (b) LD2 (785 nm) on the injection current.

Fig. 4
Fig. 4

Normalized spectral intensities observed at 22.8 °C. dc bias currents were (a) 79, (b) 79.4, (c) 80, (d) 80.6, and (e) 81 mA, respectively.

Fig. 5
Fig. 5

Long-term observation of the deviations of controlled temperature and the intensity ratio between P 1 and P 2.

Fig. 6
Fig. 6

Observations of (a) the modulating current I m (t) and (b) the interference signal S(t).

Fig. 7
Fig. 7

Interference fringes observed at (a) 79, (b) 80, and (c) 81 mA.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Six, y=aix, y+bi(x, y)cos2πfix+αix, yi=1, 2,
αix, y=2πLx, y/λi
S1+S2=2a0+2b0 cos Δα cos2πf0x+α¯,
Δα=2πd/Λ
γ12=b0/a0cos Δα,
γ0=b0/a0,
R=P2/P1-1.

Metrics