Abstract

We studied the optical feedback characteristics of a single-mode He-Ne laser with a quartz crystal plate in the external cavity. The fringe frequency of the laser system can be doubled when the quartz crystal plate is positioned at a certain angle between the crystalline axis and the beam in the crystal plate. Theoretical analysis shows that the birefringent effect of the quartz crystal plate and the laser beam’s second pass through the external cavity result in this phenomenon. The experimental results are in good agreement with the theoretical analysis. A quartz crystal plate can double the resolution of a self-mixing sensing system.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. R. King, G. J. Steward, “Metrology with an optical maser,” New Sci. 17, 180 (1963).
  2. A. Bearden, M. P. O’Neill, L. C. Osborne, T. L. Wong, “Imaging and vibrational analysis with laser-feedback interferometry,” Opt. Lett. 18, 238–240 (1993).
    [CrossRef] [PubMed]
  3. E. Lacot, R. Day, F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744–746 (1999).
    [CrossRef]
  4. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32, 1551–1558 (1993).
    [CrossRef] [PubMed]
  5. T. Yoshino, M. Nara, S. Mnatzkanian, B. S. Lee, T. C. Strand, “Laser diode feedback interferometer for stabilization and displacement measurements,” Appl. Opt. 26, 892–897 (1987).
    [CrossRef] [PubMed]
  6. G. Giulian, M. Norgia, S. Donati, T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, S283–S294 (2002).
    [CrossRef]
  7. J. H. Churnside, “Laser Doppler velocimetry by modulating a CO2 laser with backscattered light,” Appl. Opt. 23, 61–65 (1984).
    [CrossRef]
  8. J. H. Churnside, “Signal-to-noise in a backscatter-modulated Doppler velocimeter,” Appl. Opt. 23, 2097–2106 (1984).
    [CrossRef] [PubMed]
  9. S. Shinohara, A. Mochizuki, H. Yoshida, M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25, 1417–1419 (1986).
    [CrossRef] [PubMed]
  10. M. K. Koelink, M. Slot, F. F. de Mul, J. Greve, R. Graaff, A. C. M. Sassel, J. G. Aarnoudse, “Glass-fiber self-mixing diode-laser Doppler velocimeter,” Meas. Sci. Technol. 3, 33–37 (1992).
    [CrossRef]
  11. K. Otsuka, R. Kawai, Y. Asakawa, T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped microchip LiNdP4O12 laser,” Opt. Lett. 24, 1862–1864 (1999).
    [CrossRef]
  12. K. Otsuka, K. Abe, J.-Y. Ko, T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett. 27, 1339–1341 (2002).
    [CrossRef]
  13. R. Kawai, Y. Asakawa, K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11, 706–708 (1999).
    [CrossRef]
  14. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “Fiber-optic Doppler velocimeter that incorporates active optical feedback from a diode laser,” Opt. Lett. 17, 819–821 (1992).
    [CrossRef] [PubMed]
  15. P. J. De Groot, G. M. Gallatin, S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
    [CrossRef] [PubMed]
  16. G. Liu, S. Zhang, J. Zhu, Y. Li, “Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser,” Opt. Commun. 221, 387–393 (2003).
    [CrossRef]
  17. W. M. Wang, K. T. V. Grattan, A. W. Palmer, W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
    [CrossRef]
  18. R. C. Addy, A. W. Palmer, K. T. V. Grattan, “Effects of external reflector alignment in sensing applications of optical feedback in laser diodes,” J. Lightwave Technol. 14, 2672–2676 (1996).
    [CrossRef]

2003 (1)

G. Liu, S. Zhang, J. Zhu, Y. Li, “Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser,” Opt. Commun. 221, 387–393 (2003).
[CrossRef]

2002 (2)

G. Giulian, M. Norgia, S. Donati, T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, S283–S294 (2002).
[CrossRef]

K. Otsuka, K. Abe, J.-Y. Ko, T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett. 27, 1339–1341 (2002).
[CrossRef]

1999 (3)

1996 (1)

R. C. Addy, A. W. Palmer, K. T. V. Grattan, “Effects of external reflector alignment in sensing applications of optical feedback in laser diodes,” J. Lightwave Technol. 14, 2672–2676 (1996).
[CrossRef]

1994 (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

1993 (2)

1992 (2)

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “Fiber-optic Doppler velocimeter that incorporates active optical feedback from a diode laser,” Opt. Lett. 17, 819–821 (1992).
[CrossRef] [PubMed]

M. K. Koelink, M. Slot, F. F. de Mul, J. Greve, R. Graaff, A. C. M. Sassel, J. G. Aarnoudse, “Glass-fiber self-mixing diode-laser Doppler velocimeter,” Meas. Sci. Technol. 3, 33–37 (1992).
[CrossRef]

1988 (1)

1987 (1)

1986 (1)

1984 (2)

1963 (1)

P. G. R. King, G. J. Steward, “Metrology with an optical maser,” New Sci. 17, 180 (1963).

Aarnoudse, J. G.

M. K. Koelink, M. Slot, F. F. de Mul, J. Greve, R. Graaff, A. C. M. Sassel, J. G. Aarnoudse, “Glass-fiber self-mixing diode-laser Doppler velocimeter,” Meas. Sci. Technol. 3, 33–37 (1992).
[CrossRef]

Abe, K.

Addy, R. C.

R. C. Addy, A. W. Palmer, K. T. V. Grattan, “Effects of external reflector alignment in sensing applications of optical feedback in laser diodes,” J. Lightwave Technol. 14, 2672–2676 (1996).
[CrossRef]

Asakawa, Y.

K. Otsuka, R. Kawai, Y. Asakawa, T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped microchip LiNdP4O12 laser,” Opt. Lett. 24, 1862–1864 (1999).
[CrossRef]

R. Kawai, Y. Asakawa, K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11, 706–708 (1999).
[CrossRef]

Bearden, A.

Bosch, T.

G. Giulian, M. Norgia, S. Donati, T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, S283–S294 (2002).
[CrossRef]

Boyle, W. J. O.

Churnside, J. H.

Day, R.

De Groot, P. J.

de Mul, F. F.

M. K. Koelink, M. Slot, F. F. de Mul, J. Greve, R. Graaff, A. C. M. Sassel, J. G. Aarnoudse, “Glass-fiber self-mixing diode-laser Doppler velocimeter,” Meas. Sci. Technol. 3, 33–37 (1992).
[CrossRef]

Donati, S.

G. Giulian, M. Norgia, S. Donati, T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, S283–S294 (2002).
[CrossRef]

Fukazawa, T.

Gallatin, G. M.

Giulian, G.

G. Giulian, M. Norgia, S. Donati, T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, S283–S294 (2002).
[CrossRef]

Graaff, R.

M. K. Koelink, M. Slot, F. F. de Mul, J. Greve, R. Graaff, A. C. M. Sassel, J. G. Aarnoudse, “Glass-fiber self-mixing diode-laser Doppler velocimeter,” Meas. Sci. Technol. 3, 33–37 (1992).
[CrossRef]

Grattan, K. T. V.

R. C. Addy, A. W. Palmer, K. T. V. Grattan, “Effects of external reflector alignment in sensing applications of optical feedback in laser diodes,” J. Lightwave Technol. 14, 2672–2676 (1996).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32, 1551–1558 (1993).
[CrossRef] [PubMed]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “Fiber-optic Doppler velocimeter that incorporates active optical feedback from a diode laser,” Opt. Lett. 17, 819–821 (1992).
[CrossRef] [PubMed]

Greve, J.

M. K. Koelink, M. Slot, F. F. de Mul, J. Greve, R. Graaff, A. C. M. Sassel, J. G. Aarnoudse, “Glass-fiber self-mixing diode-laser Doppler velocimeter,” Meas. Sci. Technol. 3, 33–37 (1992).
[CrossRef]

Kawai, R.

R. Kawai, Y. Asakawa, K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11, 706–708 (1999).
[CrossRef]

K. Otsuka, R. Kawai, Y. Asakawa, T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped microchip LiNdP4O12 laser,” Opt. Lett. 24, 1862–1864 (1999).
[CrossRef]

King, P. G. R.

P. G. R. King, G. J. Steward, “Metrology with an optical maser,” New Sci. 17, 180 (1963).

Ko, J.-Y.

Koelink, M. K.

M. K. Koelink, M. Slot, F. F. de Mul, J. Greve, R. Graaff, A. C. M. Sassel, J. G. Aarnoudse, “Glass-fiber self-mixing diode-laser Doppler velocimeter,” Meas. Sci. Technol. 3, 33–37 (1992).
[CrossRef]

Lacot, E.

Lee, B. S.

Li, Y.

G. Liu, S. Zhang, J. Zhu, Y. Li, “Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser,” Opt. Commun. 221, 387–393 (2003).
[CrossRef]

Lim, T.-S.

Liu, G.

G. Liu, S. Zhang, J. Zhu, Y. Li, “Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser,” Opt. Commun. 221, 387–393 (2003).
[CrossRef]

Macomber, S. H.

Mnatzkanian, S.

Mochizuki, A.

Nara, M.

Norgia, M.

G. Giulian, M. Norgia, S. Donati, T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, S283–S294 (2002).
[CrossRef]

O’Neill, M. P.

Osborne, L. C.

Otsuka, K.

Palmer, A. W.

R. C. Addy, A. W. Palmer, K. T. V. Grattan, “Effects of external reflector alignment in sensing applications of optical feedback in laser diodes,” J. Lightwave Technol. 14, 2672–2676 (1996).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32, 1551–1558 (1993).
[CrossRef] [PubMed]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “Fiber-optic Doppler velocimeter that incorporates active optical feedback from a diode laser,” Opt. Lett. 17, 819–821 (1992).
[CrossRef] [PubMed]

Sassel, A. C. M.

M. K. Koelink, M. Slot, F. F. de Mul, J. Greve, R. Graaff, A. C. M. Sassel, J. G. Aarnoudse, “Glass-fiber self-mixing diode-laser Doppler velocimeter,” Meas. Sci. Technol. 3, 33–37 (1992).
[CrossRef]

Shinohara, S.

Slot, M.

M. K. Koelink, M. Slot, F. F. de Mul, J. Greve, R. Graaff, A. C. M. Sassel, J. G. Aarnoudse, “Glass-fiber self-mixing diode-laser Doppler velocimeter,” Meas. Sci. Technol. 3, 33–37 (1992).
[CrossRef]

Steward, G. J.

P. G. R. King, G. J. Steward, “Metrology with an optical maser,” New Sci. 17, 180 (1963).

Stoeckel, F.

Strand, T. C.

Sumi, M.

Wang, W. M.

Wong, T. L.

Yoshida, H.

Yoshino, T.

Zhang, S.

G. Liu, S. Zhang, J. Zhu, Y. Li, “Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser,” Opt. Commun. 221, 387–393 (2003).
[CrossRef]

Zhu, J.

G. Liu, S. Zhang, J. Zhu, Y. Li, “Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser,” Opt. Commun. 221, 387–393 (2003).
[CrossRef]

Appl. Opt. (6)

IEEE Photon. Technol. Lett. (1)

R. Kawai, Y. Asakawa, K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11, 706–708 (1999).
[CrossRef]

J. Lightwave Technol. (2)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

R. C. Addy, A. W. Palmer, K. T. V. Grattan, “Effects of external reflector alignment in sensing applications of optical feedback in laser diodes,” J. Lightwave Technol. 14, 2672–2676 (1996).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

G. Giulian, M. Norgia, S. Donati, T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, S283–S294 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

M. K. Koelink, M. Slot, F. F. de Mul, J. Greve, R. Graaff, A. C. M. Sassel, J. G. Aarnoudse, “Glass-fiber self-mixing diode-laser Doppler velocimeter,” Meas. Sci. Technol. 3, 33–37 (1992).
[CrossRef]

New Sci. (1)

P. G. R. King, G. J. Steward, “Metrology with an optical maser,” New Sci. 17, 180 (1963).

Opt. Commun. (1)

G. Liu, S. Zhang, J. Zhu, Y. Li, “Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser,” Opt. Commun. 221, 387–393 (2003).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

External cavity with a crystal quartz plate.

Fig. 3
Fig. 3

Simulation of the laser intensity versus output voltage of the D/A card for different values of δ Q : filled circles, δ Q = π. Open circles, δ Q = 0.

Fig. 4
Fig. 4

Observation of the laser intensity versus output voltage of the D/A card for different values of δ Q : open circles, δ Q = 0; filled circles, δ Q = π.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Eo=Ee=2Eex/2.
Eo=2Eo/2,
Ee=2Ee/2,
Eo=Ee=Eex/2.
δQ=le-lo4πνcΔnLQ4πνc,
Et=r1r2 expj4πνnLc+gLE0t+12 r1t2r3f expj4πνnL+loc+gLE0t+12 r1t2r3sr3f expj4πνnLc+8πνloc+δ+gLE0t+12 r1t2r3f expj4πνnL+lec+gLE0t+12 r1t2r3sr3f expj4πνnLc+8πνlec+δ+gLE0t,
g=-1Llnr1r2+12 βcosϕ+cosϕ+δQ+12 γcos2ϕ+δ+cos2ϕ+2δQ+δ,
β=t2fr3r2, γ=t2fsr32r2, ϕ=4πνloc.
g0=-lnr1r2L.
Δg=g-g0=-12 βcosϕ+cosϕ+δQ+ρcos2ϕ+δ+cos2ϕ+2δQ+δ,
I=I01-KΔg,
I=I01+Kβ2Lcosϕ+cosϕ+δQ+ρcos2ϕ+δ+cos2ϕ+2δQ+δ.
I=I01+KβLcosϕ+ρ cos2ϕ+δ.
I=I01+KβL ρ cos2ϕ+δ.

Metrics