Abstract

A modified simplified rate-equation model that utilizes the Voigt profile function and another gain saturation model deduced from the kinetic equations are presented for performance analyses of a flowing chemical oxygen-iodine laser. Both models are adapted to both the condition of homogeneous broadening and that of inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant. Effects of temperature and iodine density on the output power and on variations of output power, optical intensity, and saturation intensity with flow distance are presented as well. There are differences between results of two models, but both qualitatively agree with known results.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525–1536 (1996).
    [CrossRef]
  2. B. D. Barmashenko, S. Rosenwaks, “Analysis of the optical extraction efficiency in gas-flow lasers with different types of resonator,” Appl. Opt. 35, 7091–7101 (1996).
    [CrossRef] [PubMed]
  3. Q. Zhuang, F. T. Sang, D. Z. Zhou, Short-Wavelength Chemical Lasers (Press of National Defense Industry, Beijing, China, 1997), in Chinese.
  4. M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1984).
    [CrossRef]
  5. H. Mirels, “Effects of translational and rotational nonequilibrium on cw chemical laser performance,” Appl. Opt. 27, 89–95 (1988).
    [CrossRef] [PubMed]
  6. Z. Gao, “Collisional and inhomogeneous broadening effects in gas-flow and chemical lasers: the theoretical models,” Acta Phys. Sin. 30, 1591–1602 (1981), in Chinese.
  7. Z. Gao, E. Xuequan, “Kinetics model of flowing chemical lasers,” Sci. China A 31, 46–57 (1982), in Chinese.
  8. Y. Hai-Xing, Z. Gao, “Laser-gas flow medium interactions and their numerical simulations,” in Seventh International Symposium on Gas Flow and Chemical LasersProc. SPIE1031, 532–544 (1989).
    [CrossRef]
  9. G. Zhi, H. Limin, “Effects of spectral line broadened model on performance of flowing chemical oxygen-iodine laser,” Chin. Phys. Lett. 19, 1628–1631 (2002).
    [CrossRef]
  10. R. W. F. Gross, J. F. Bott, Handbook of Chemical Lasers (Wiley, New York, 1976), p. 501.
  11. J. F. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” presented at the 25th America Institute of Aeronautics and Astronautics Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2422.
  12. A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small scale, supersonic oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
    [CrossRef]
  13. Y. Chen, J. Wang, Principles of Lasers (Zhejiang U. Press, Hangzhou, China, 1998) pp. 299–300 (in Chinese).
  14. K. A. Truesdell, C. A. Helms, G. D. Hager, “COIL development in the USA,” presented at the American Institute of Aeronautics and Astronautics 25th Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2421.
  15. D. A. Copeland, A. H. Bauer, “Optical saturation and extraction from the chemical oxygen-iodine laser medium,” IEEE J. Quantum Electron. 29, 2525–2539 (1993).
    [CrossRef]

2002 (1)

G. Zhi, H. Limin, “Effects of spectral line broadened model on performance of flowing chemical oxygen-iodine laser,” Chin. Phys. Lett. 19, 1628–1631 (2002).
[CrossRef]

1996 (2)

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525–1536 (1996).
[CrossRef]

B. D. Barmashenko, S. Rosenwaks, “Analysis of the optical extraction efficiency in gas-flow lasers with different types of resonator,” Appl. Opt. 35, 7091–7101 (1996).
[CrossRef] [PubMed]

1995 (1)

A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small scale, supersonic oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
[CrossRef]

1993 (1)

D. A. Copeland, A. H. Bauer, “Optical saturation and extraction from the chemical oxygen-iodine laser medium,” IEEE J. Quantum Electron. 29, 2525–2539 (1993).
[CrossRef]

1988 (1)

1984 (1)

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1984).
[CrossRef]

1982 (1)

Z. Gao, E. Xuequan, “Kinetics model of flowing chemical lasers,” Sci. China A 31, 46–57 (1982), in Chinese.

1981 (1)

Z. Gao, “Collisional and inhomogeneous broadening effects in gas-flow and chemical lasers: the theoretical models,” Acta Phys. Sin. 30, 1591–1602 (1981), in Chinese.

Barmashenko, B. D.

B. D. Barmashenko, S. Rosenwaks, “Analysis of the optical extraction efficiency in gas-flow lasers with different types of resonator,” Appl. Opt. 35, 7091–7101 (1996).
[CrossRef] [PubMed]

A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small scale, supersonic oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
[CrossRef]

Bauer, A. H.

D. A. Copeland, A. H. Bauer, “Optical saturation and extraction from the chemical oxygen-iodine laser medium,” IEEE J. Quantum Electron. 29, 2525–2539 (1993).
[CrossRef]

Bott, J. F.

R. W. F. Gross, J. F. Bott, Handbook of Chemical Lasers (Wiley, New York, 1976), p. 501.

Chen, Y.

Y. Chen, J. Wang, Principles of Lasers (Zhejiang U. Press, Hangzhou, China, 1998) pp. 299–300 (in Chinese).

Copeland, D. A.

D. A. Copeland, A. H. Bauer, “Optical saturation and extraction from the chemical oxygen-iodine laser medium,” IEEE J. Quantum Electron. 29, 2525–2539 (1993).
[CrossRef]

Crowell, P.

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525–1536 (1996).
[CrossRef]

Crowell, P. G.

J. F. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” presented at the 25th America Institute of Aeronautics and Astronautics Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2422.

Elior, A.

A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small scale, supersonic oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
[CrossRef]

Erkkila, J.

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525–1536 (1996).
[CrossRef]

J. F. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” presented at the 25th America Institute of Aeronautics and Astronautics Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2422.

Gao, Z.

Z. Gao, E. Xuequan, “Kinetics model of flowing chemical lasers,” Sci. China A 31, 46–57 (1982), in Chinese.

Z. Gao, “Collisional and inhomogeneous broadening effects in gas-flow and chemical lasers: the theoretical models,” Acta Phys. Sin. 30, 1591–1602 (1981), in Chinese.

Y. Hai-Xing, Z. Gao, “Laser-gas flow medium interactions and their numerical simulations,” in Seventh International Symposium on Gas Flow and Chemical LasersProc. SPIE1031, 532–544 (1989).
[CrossRef]

Gross, R. W. F.

R. W. F. Gross, J. F. Bott, Handbook of Chemical Lasers (Wiley, New York, 1976), p. 501.

Hager, G. D.

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525–1536 (1996).
[CrossRef]

J. F. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” presented at the 25th America Institute of Aeronautics and Astronautics Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2422.

K. A. Truesdell, C. A. Helms, G. D. Hager, “COIL development in the USA,” presented at the American Institute of Aeronautics and Astronautics 25th Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2421.

Hai-Xing, Y.

Y. Hai-Xing, Z. Gao, “Laser-gas flow medium interactions and their numerical simulations,” in Seventh International Symposium on Gas Flow and Chemical LasersProc. SPIE1031, 532–544 (1989).
[CrossRef]

Helms, C. A.

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525–1536 (1996).
[CrossRef]

J. F. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” presented at the 25th America Institute of Aeronautics and Astronautics Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2422.

K. A. Truesdell, C. A. Helms, G. D. Hager, “COIL development in the USA,” presented at the American Institute of Aeronautics and Astronautics 25th Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2421.

Hon, J. F.

J. F. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” presented at the 25th America Institute of Aeronautics and Astronautics Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2422.

Igoshin, V. I.

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1984).
[CrossRef]

Kupriyanov, N. L.

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1984).
[CrossRef]

Lebiush, E.

A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small scale, supersonic oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
[CrossRef]

Limin, H.

G. Zhi, H. Limin, “Effects of spectral line broadened model on performance of flowing chemical oxygen-iodine laser,” Chin. Phys. Lett. 19, 1628–1631 (2002).
[CrossRef]

Mirels, H.

Plummer, D.

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525–1536 (1996).
[CrossRef]

Plummer, D. N.

J. F. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” presented at the 25th America Institute of Aeronautics and Astronautics Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2422.

Rosenwaks, S.

B. D. Barmashenko, S. Rosenwaks, “Analysis of the optical extraction efficiency in gas-flow lasers with different types of resonator,” Appl. Opt. 35, 7091–7101 (1996).
[CrossRef] [PubMed]

A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small scale, supersonic oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
[CrossRef]

Sang, F. T.

Q. Zhuang, F. T. Sang, D. Z. Zhou, Short-Wavelength Chemical Lasers (Press of National Defense Industry, Beijing, China, 1997), in Chinese.

Truesdell, K. A.

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525–1536 (1996).
[CrossRef]

J. F. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” presented at the 25th America Institute of Aeronautics and Astronautics Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2422.

K. A. Truesdell, C. A. Helms, G. D. Hager, “COIL development in the USA,” presented at the American Institute of Aeronautics and Astronautics 25th Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2421.

Wang, J.

Y. Chen, J. Wang, Principles of Lasers (Zhejiang U. Press, Hangzhou, China, 1998) pp. 299–300 (in Chinese).

Xuequan, E.

Z. Gao, E. Xuequan, “Kinetics model of flowing chemical lasers,” Sci. China A 31, 46–57 (1982), in Chinese.

Zagidullin, M. V.

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1984).
[CrossRef]

Zhi, G.

G. Zhi, H. Limin, “Effects of spectral line broadened model on performance of flowing chemical oxygen-iodine laser,” Chin. Phys. Lett. 19, 1628–1631 (2002).
[CrossRef]

Zhou, D. Z.

Q. Zhuang, F. T. Sang, D. Z. Zhou, Short-Wavelength Chemical Lasers (Press of National Defense Industry, Beijing, China, 1997), in Chinese.

Zhuang, Q.

Q. Zhuang, F. T. Sang, D. Z. Zhou, Short-Wavelength Chemical Lasers (Press of National Defense Industry, Beijing, China, 1997), in Chinese.

Acta Phys. Sin. (1)

Z. Gao, “Collisional and inhomogeneous broadening effects in gas-flow and chemical lasers: the theoretical models,” Acta Phys. Sin. 30, 1591–1602 (1981), in Chinese.

Appl. Opt. (2)

Appl. Phys. B (1)

A. Elior, B. D. Barmashenko, E. Lebiush, S. Rosenwaks, “Experiment and modeling of a small scale, supersonic oxygen-iodine laser,” Appl. Phys. B 61, 37–47 (1995).
[CrossRef]

Chin. Phys. Lett. (1)

G. Zhi, H. Limin, “Effects of spectral line broadened model on performance of flowing chemical oxygen-iodine laser,” Chin. Phys. Lett. 19, 1628–1631 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. A. Copeland, A. H. Bauer, “Optical saturation and extraction from the chemical oxygen-iodine laser medium,” IEEE J. Quantum Electron. 29, 2525–2539 (1993).
[CrossRef]

G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525–1536 (1996).
[CrossRef]

Sci. China A (1)

Z. Gao, E. Xuequan, “Kinetics model of flowing chemical lasers,” Sci. China A 31, 46–57 (1982), in Chinese.

Sov. J. Quantum Electron. (1)

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1984).
[CrossRef]

Other (6)

Y. Hai-Xing, Z. Gao, “Laser-gas flow medium interactions and their numerical simulations,” in Seventh International Symposium on Gas Flow and Chemical LasersProc. SPIE1031, 532–544 (1989).
[CrossRef]

R. W. F. Gross, J. F. Bott, Handbook of Chemical Lasers (Wiley, New York, 1976), p. 501.

J. F. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” presented at the 25th America Institute of Aeronautics and Astronautics Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2422.

Q. Zhuang, F. T. Sang, D. Z. Zhou, Short-Wavelength Chemical Lasers (Press of National Defense Industry, Beijing, China, 1997), in Chinese.

Y. Chen, J. Wang, Principles of Lasers (Zhejiang U. Press, Hangzhou, China, 1998) pp. 299–300 (in Chinese).

K. A. Truesdell, C. A. Helms, G. D. Hager, “COIL development in the USA,” presented at the American Institute of Aeronautics and Astronautics 25th Plasmadynamics and Laser Conference, Colorado Springs, Colo., 20–23 June 1994, paper 94-2421.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Relations between dimensionless intensity Ī of Eq. (7) and Ī ν of Eq. (12).

Fig. 2
Fig. 2

Comparison of theoretical powers with RotoCOIL experimental data.

Fig. 3
Fig. 3

Comparison of efficiencies of Ref. 1 and RE model for different η.

Fig. 4
Fig. 4

Variation of power with g th for different I2/O2 values.

Fig. 5
Fig. 5

Variation of power with g th for different ξ.

Fig. 6
Fig. 6

Variations of (a) the optimum power and (b) the optimal threshold gain g opt and zero-power crossing point g th0 with ξ in RE and SGK models.

Fig. 7
Fig. 7

Comparison of powers with use of the SGK and RE models.

Fig. 8
Fig. 8

Variations of powers with g th for different Y 0.

Fig. 9
Fig. 9

Variations of (a) the output power, (b) the gain saturation degree, (c) the optical intensity, and (d) the excited oxygen yield with x/ L when g th = 0.0025 cm-1.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

n1+n2=n,
O21Δ+I krkf O23+I*,
g=σφν, ν0n2-αn1,
φν, ν0=η2π-+exp-t2η2+ξ-t2dt,
n1=n-g/σφ/1+α, n2=αn+g/σφ/1+α.
un2/x=rn1-kpn2-σφν, ν0n2-αn1I/hν, un1/x=-rn1+kpn2+σφν, ν0 ×n2-αn1I/hν,
r=kfnΔ and kp=krn,
u gx+r+kp+1+ασφν, ν0Ihνg=r-αkpσφν, ν0n.
g=gth, dgthdx=0.
g=Kσnηπerfc η expη21+Īνηπerfc η expη2,
g=Kσn/1+I/Is.
g=Kσnηπ/1+I/Isηπ.
g=Kσn η21+Īπ-+e-t2η21+Ī+ξ-t2dt.
g=Kσn ηπ1+Īexp1+Īη2erfcη1+Ī.
g=Kσn0ηπ1+I/IS.
P=Pavηext,
ηext=ηextmηextr,
Pav=hνYo-YthQNA,
ηextm=Y0-YeY0-Yth,
u dnΔdx=-gIhν.
Y=Y0-qpexp-px]+qp,
p=2kr3ηπσuηπσn22Ke+1-Ke-1gY, q=2kr3ηπσuηπσn2+g.
ηextr=1-Rout-Sout/1-Rout-Sout1+δ +Sout+Rout/Rmax1/21-Rmax,

Metrics