Abstract

The majority of organic carbon in the oceans is present as dissolved organic matter (DOM); therefore understanding the distribution and dynamics of DOM is central to understanding global carbon cycles. Describing the time-space variability in colored dissolved organic matter (CDOM) has been difficult, as standard spectrophotometric methods for CDOM determination are laborious and susceptible to methodological biases. Previously, measurements of CDOM absorption in discrete water samples by use of a liquid-waveguide capillary cell (LWCC) compared favorably with measurements made with a benchtop spectrophotometer. Given this, we focused on automating the LWCC technique to improve our spatial and temporal sampling capabilities for CDOM. We found strong correlations between CDOM absorption spectra collected from discrete water samples using standard methods and selected corresponding CDOM spectra collected by the automated LWCC system. The near-continuous measurements by the LWCC system made it possible to map the temporal, spatial, and spectral variability of CDOM absorption along the ship track.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Williams, E. R. M. Druffel, “Radiocarbon in dissolved organic matter in the central North Pacific Ocean,” Nature (London) 330, 246–248 (1987).
    [CrossRef]
  2. R. J. Kieber, L. H. Hydro, P. J. Seaton, “Photooxidation of triglycerides and fatty acids in seawater: implications toward the formation of marine humic substances,” Limnol. Oceanogr. 42, 1454–1462 (1997).
    [CrossRef]
  3. W. L. Miller, M. A. Moran, “Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment,” Limnol. Oceanogr. 42, 417–420 (1997).
    [CrossRef]
  4. M. A. Moran, R. G. Zepp, “Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter,” Limnol. Oceanogr. 42, 1307–1316 (1997).
    [CrossRef]
  5. K. Kalle, “The problem of the gelbstoff in the sea,” Oceanogr. Mar. Biol. Ann. Rev. 4, 91–104 (1966).
  6. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
    [CrossRef]
  7. S. A. Green, N. V. Blough, “Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters,” Limnol. Oceanogr. 39, 1903–1916 (1994).
    [CrossRef]
  8. K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
    [CrossRef]
  9. C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol Oceanogr. 34, 1510–1523 (1989).
    [CrossRef]
  10. N. G. Jerlov, Marine Optics (Elsevier, New York, 1976).
  11. J. T. O. Kirk, “Yellow substance (gelbstoff) and its contribution to the attenuation of photosynthetically active radiation in some inland and coastal southeastern Australian waters,” Aust. J. Mar. Freshwater Res. 27, 61–71 (1976).
    [CrossRef]
  12. E. J. D’Sa, R. G. Steward, A. Vodacek, N. V. Blough, D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44, 1142–1148 (1999).
    [CrossRef]
  13. R. H. Byrne, E. Kaltenbacher, “Use of liquid core waveguides for long pathlength absorbance spectroscopy: principles and practice,” Limnol. Oceanogr. 46, 740–742 (2001).
  14. E. J. D’Sa, R. G. Steward, “Liquid capillary waveguide application in absorbance spectroscopy (reply to the comment by Byrne and Kaltenbacher),” Limnol. Oceanogr. 46, 742–745 (2001).

2001

R. H. Byrne, E. Kaltenbacher, “Use of liquid core waveguides for long pathlength absorbance spectroscopy: principles and practice,” Limnol. Oceanogr. 46, 740–742 (2001).

E. J. D’Sa, R. G. Steward, “Liquid capillary waveguide application in absorbance spectroscopy (reply to the comment by Byrne and Kaltenbacher),” Limnol. Oceanogr. 46, 742–745 (2001).

1999

E. J. D’Sa, R. G. Steward, A. Vodacek, N. V. Blough, D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44, 1142–1148 (1999).
[CrossRef]

1997

R. J. Kieber, L. H. Hydro, P. J. Seaton, “Photooxidation of triglycerides and fatty acids in seawater: implications toward the formation of marine humic substances,” Limnol. Oceanogr. 42, 1454–1462 (1997).
[CrossRef]

W. L. Miller, M. A. Moran, “Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment,” Limnol. Oceanogr. 42, 417–420 (1997).
[CrossRef]

M. A. Moran, R. G. Zepp, “Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter,” Limnol. Oceanogr. 42, 1307–1316 (1997).
[CrossRef]

1994

S. A. Green, N. V. Blough, “Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters,” Limnol. Oceanogr. 39, 1903–1916 (1994).
[CrossRef]

1989

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

1987

P. M. Williams, E. R. M. Druffel, “Radiocarbon in dissolved organic matter in the central North Pacific Ocean,” Nature (London) 330, 246–248 (1987).
[CrossRef]

1981

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

1976

J. T. O. Kirk, “Yellow substance (gelbstoff) and its contribution to the attenuation of photosynthetically active radiation in some inland and coastal southeastern Australian waters,” Aust. J. Mar. Freshwater Res. 27, 61–71 (1976).
[CrossRef]

1966

K. Kalle, “The problem of the gelbstoff in the sea,” Oceanogr. Mar. Biol. Ann. Rev. 4, 91–104 (1966).

Blough, N. V.

E. J. D’Sa, R. G. Steward, A. Vodacek, N. V. Blough, D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44, 1142–1148 (1999).
[CrossRef]

S. A. Green, N. V. Blough, “Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters,” Limnol. Oceanogr. 39, 1903–1916 (1994).
[CrossRef]

Bricaud, A.

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Byrne, R. H.

R. H. Byrne, E. Kaltenbacher, “Use of liquid core waveguides for long pathlength absorbance spectroscopy: principles and practice,” Limnol. Oceanogr. 46, 740–742 (2001).

Carder, K. L.

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

D’Sa, E. J.

E. J. D’Sa, R. G. Steward, “Liquid capillary waveguide application in absorbance spectroscopy (reply to the comment by Byrne and Kaltenbacher),” Limnol. Oceanogr. 46, 742–745 (2001).

E. J. D’Sa, R. G. Steward, A. Vodacek, N. V. Blough, D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44, 1142–1148 (1999).
[CrossRef]

Druffel, E. R. M.

P. M. Williams, E. R. M. Druffel, “Radiocarbon in dissolved organic matter in the central North Pacific Ocean,” Nature (London) 330, 246–248 (1987).
[CrossRef]

Green, S. A.

S. A. Green, N. V. Blough, “Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters,” Limnol. Oceanogr. 39, 1903–1916 (1994).
[CrossRef]

Harvey, G. R.

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

Hydro, L. H.

R. J. Kieber, L. H. Hydro, P. J. Seaton, “Photooxidation of triglycerides and fatty acids in seawater: implications toward the formation of marine humic substances,” Limnol. Oceanogr. 42, 1454–1462 (1997).
[CrossRef]

Jerlov, N. G.

N. G. Jerlov, Marine Optics (Elsevier, New York, 1976).

Kalle, K.

K. Kalle, “The problem of the gelbstoff in the sea,” Oceanogr. Mar. Biol. Ann. Rev. 4, 91–104 (1966).

Kaltenbacher, E.

R. H. Byrne, E. Kaltenbacher, “Use of liquid core waveguides for long pathlength absorbance spectroscopy: principles and practice,” Limnol. Oceanogr. 46, 740–742 (2001).

Kieber, R. J.

R. J. Kieber, L. H. Hydro, P. J. Seaton, “Photooxidation of triglycerides and fatty acids in seawater: implications toward the formation of marine humic substances,” Limnol. Oceanogr. 42, 1454–1462 (1997).
[CrossRef]

Kirk, J. T. O.

J. T. O. Kirk, “Yellow substance (gelbstoff) and its contribution to the attenuation of photosynthetically active radiation in some inland and coastal southeastern Australian waters,” Aust. J. Mar. Freshwater Res. 27, 61–71 (1976).
[CrossRef]

Miller, W. L.

W. L. Miller, M. A. Moran, “Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment,” Limnol. Oceanogr. 42, 417–420 (1997).
[CrossRef]

Moran, M. A.

W. L. Miller, M. A. Moran, “Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment,” Limnol. Oceanogr. 42, 417–420 (1997).
[CrossRef]

M. A. Moran, R. G. Zepp, “Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter,” Limnol. Oceanogr. 42, 1307–1316 (1997).
[CrossRef]

Morel, A.

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Ortner, P. B.

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

Perry, M. J.

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Phinney, D.

E. J. D’Sa, R. G. Steward, A. Vodacek, N. V. Blough, D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44, 1142–1148 (1999).
[CrossRef]

Prieur, L.

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Roesler, C. S.

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Seaton, P. J.

R. J. Kieber, L. H. Hydro, P. J. Seaton, “Photooxidation of triglycerides and fatty acids in seawater: implications toward the formation of marine humic substances,” Limnol. Oceanogr. 42, 1454–1462 (1997).
[CrossRef]

Steward, R. G.

E. J. D’Sa, R. G. Steward, “Liquid capillary waveguide application in absorbance spectroscopy (reply to the comment by Byrne and Kaltenbacher),” Limnol. Oceanogr. 46, 742–745 (2001).

E. J. D’Sa, R. G. Steward, A. Vodacek, N. V. Blough, D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44, 1142–1148 (1999).
[CrossRef]

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

Vodacek, A.

E. J. D’Sa, R. G. Steward, A. Vodacek, N. V. Blough, D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44, 1142–1148 (1999).
[CrossRef]

Williams, P. M.

P. M. Williams, E. R. M. Druffel, “Radiocarbon in dissolved organic matter in the central North Pacific Ocean,” Nature (London) 330, 246–248 (1987).
[CrossRef]

Zepp, R. G.

M. A. Moran, R. G. Zepp, “Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter,” Limnol. Oceanogr. 42, 1307–1316 (1997).
[CrossRef]

Aust. J. Mar. Freshwater Res.

J. T. O. Kirk, “Yellow substance (gelbstoff) and its contribution to the attenuation of photosynthetically active radiation in some inland and coastal southeastern Australian waters,” Aust. J. Mar. Freshwater Res. 27, 61–71 (1976).
[CrossRef]

Limnol Oceanogr.

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Limnol. Oceanogr.

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

S. A. Green, N. V. Blough, “Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters,” Limnol. Oceanogr. 39, 1903–1916 (1994).
[CrossRef]

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

R. J. Kieber, L. H. Hydro, P. J. Seaton, “Photooxidation of triglycerides and fatty acids in seawater: implications toward the formation of marine humic substances,” Limnol. Oceanogr. 42, 1454–1462 (1997).
[CrossRef]

W. L. Miller, M. A. Moran, “Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment,” Limnol. Oceanogr. 42, 417–420 (1997).
[CrossRef]

M. A. Moran, R. G. Zepp, “Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter,” Limnol. Oceanogr. 42, 1307–1316 (1997).
[CrossRef]

E. J. D’Sa, R. G. Steward, A. Vodacek, N. V. Blough, D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44, 1142–1148 (1999).
[CrossRef]

R. H. Byrne, E. Kaltenbacher, “Use of liquid core waveguides for long pathlength absorbance spectroscopy: principles and practice,” Limnol. Oceanogr. 46, 740–742 (2001).

E. J. D’Sa, R. G. Steward, “Liquid capillary waveguide application in absorbance spectroscopy (reply to the comment by Byrne and Kaltenbacher),” Limnol. Oceanogr. 46, 742–745 (2001).

Nature (London)

P. M. Williams, E. R. M. Druffel, “Radiocarbon in dissolved organic matter in the central North Pacific Ocean,” Nature (London) 330, 246–248 (1987).
[CrossRef]

Oceanogr. Mar. Biol. Ann. Rev.

K. Kalle, “The problem of the gelbstoff in the sea,” Oceanogr. Mar. Biol. Ann. Rev. 4, 91–104 (1966).

Other

N. G. Jerlov, Marine Optics (Elsevier, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configuration of the CDOM mapper. FO, fiber-optic cable.

Fig. 2
Fig. 2

Comparison between CDOM absorption spectra measured by the CDOM mapper (ordinate) and by the benchtop spectrophotometer (abscissa) on 21 July 2000. The wavelength range depicted in these plots extends from 380 to 750 nm. The heavy solid curves are a linear regression fit to the comparison with the regression equation and the correlation coefficient shown in each panel. The light solid curves are reference curves with a slope of 1.0. Figure 3 illustrates the positions of the sampling stations represented in this figure.

Fig. 3
Fig. 3

Contour map of CDOM absorption at 440 nm produced from CDOM mapper data for 21 July 2000. Open circles indicate the central position where the CDOM mapper determined average CDOM absorption spectra. The size of the circle represents the value of S, the slope of the CDOM spectrum at 440 nm, which ranged from 0.017 to 0.026 nm-1. Lettered crosses indicate sampling stations where discrete water samples were collected for CDOM absorption determinations on a benchtop spectrophotometer.

Fig. 4
Fig. 4

(a) Contour map of CDOM absorption at 440 nm produced from CDOM mapper data for 17 July 2000. Open circles indicate the central position where the CDOM mapper determined average CDOM absorption spectra. The size of the circle represents the value of S, the slope of the CDOM spectrum at 440 nm, which ranged from 0.017 to 0.020 nm-1. (b) Histograms show the distribution of S over the inner and outer sample stations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

aCDOMλ=aCDOMλ440 nmexp-Sλ-λ440 nm,

Metrics