Abstract

We present a summary of measured characteristics of lanthanum-doped lead zirconium titanate (PLZT) compound in its mechanical housing. It is expected that the PLZT device will be used as the main component in an ultrafast electro-optic switch. We have performed several experiments to measure and calculate the following characteristics: optical power transmission, thermodynamic effects, switching speed, and dc drift phenomenon.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  2. M. J. Landry, A. E. McCarthy, “Transmission switching characteristics of PLZT shutters,” Appl. Opt. 12, 2312–2319 (1973).
    [CrossRef] [PubMed]
  3. C. J. Kirkby, “Electrooptic switching response in cubic phase PLZT ceramic materials,” Appl. Opt. 15, 828–830 (1976).
    [CrossRef] [PubMed]
  4. T.-H. Lin, A. Ersen, J. H. Wang, S. Dasgupta, S. Esener, S. H. Lee, “Two-dimensional spatial light modulators fabricated in Si/PLZT,” Appl. Opt. 29, 1595–1603 (1990).
    [CrossRef] [PubMed]
  5. A. R. Dias, R. F. Kalmam, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capabilities,” Opt. Eng. 27, 955–960 (1988).
    [CrossRef]
  6. J. T. Cutchen, J. O. Harris, G. R. Laguna, “PLZT electrooptic shutters: applications,” Appl. Opt. 14, 1866–1873 (1975).
    [CrossRef] [PubMed]
  7. P. E. Shames, P. C. Sun, Y. Fainman, “Modeling of scattering and depolarizing electro-optic devices. I. Characterization of lanthanum-modified lead zirconate titanate,” Appl. Opt. 37, 3717–3725 (1998).
    [CrossRef]
  8. G. H. Haertling, C. E. Land, “Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1–10 (1971).
    [CrossRef]

1998 (1)

1990 (1)

1988 (1)

A. R. Dias, R. F. Kalmam, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capabilities,” Opt. Eng. 27, 955–960 (1988).
[CrossRef]

1976 (1)

1975 (1)

1973 (1)

1971 (1)

G. H. Haertling, C. E. Land, “Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1–10 (1971).
[CrossRef]

Cutchen, J. T.

Dasgupta, S.

Dias, A. R.

A. R. Dias, R. F. Kalmam, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capabilities,” Opt. Eng. 27, 955–960 (1988).
[CrossRef]

Ersen, A.

Esener, S.

Fainman, Y.

Haertling, G. H.

G. H. Haertling, C. E. Land, “Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1–10 (1971).
[CrossRef]

Harris, J. O.

Kalmam, R. F.

A. R. Dias, R. F. Kalmam, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capabilities,” Opt. Eng. 27, 955–960 (1988).
[CrossRef]

Kirkby, C. J.

Laguna, G. R.

Land, C. E.

G. H. Haertling, C. E. Land, “Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1–10 (1971).
[CrossRef]

Landry, M. J.

Lee, S. H.

Lin, T.-H.

McCarthy, A. E.

Sawchuk, A. A.

A. R. Dias, R. F. Kalmam, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capabilities,” Opt. Eng. 27, 955–960 (1988).
[CrossRef]

Shames, P. E.

Sun, P. C.

Wang, J. H.

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Mechanical description of the PLZT compound in its housing (all sizes in millimeters), the front view. The little arrows inside the PLZT represent the applied external electric field direction. The arrows denoted by x, y define our reference coordinate system.

Fig. 2
Fig. 2

Scheme of the basic experiment set. The PLZT housing’s side face is shown here. The light propagates along the - direction.

Fig. 3
Fig. 3

Optical transmission of PLZT versus the applied electric field at different temperatures.

Fig. 4
Fig. 4

V π versus temperature.

Fig. 5
Fig. 5

V π versus frequency of operation.

Fig. 6
Fig. 6

Time response of the PLZT compound. The rise time from 10% to 90% is 92 ns.

Fig. 7
Fig. 7

Fall time and rise time versus temperature.

Fig. 8
Fig. 8

Intensity changes due to dc drift versus time.

Fig. 9
Fig. 9

Changes in V π versus time.

Fig. 10
Fig. 10

Power dissipation versus frequency of operation.

Fig. 11
Fig. 11

Experiment set for measuring temperature changes versus frequency of operation. (a) The plastic housing support and (b) the phosphorous-bronze housing support.

Fig. 12
Fig. 12

Thermal pictures of PLZT in the plastic housing support at different frequencies of operation: (a) 1 Hz, (b) 10 Hz, (c) 100 Hz, (d) 500 Hz, (e) 1 KHz, (f) 1.5 KHz, and (g) 2 KHz. The dark color represents colder areas, and bright areas are warmer. The hottest point in the PLZT is marked with a small cross. The black rectangle next to the cross indicates the temperature of the hottest point and is enlarged at the upper right corner of each picture.

Fig. 13
Fig. 13

Thermal pictures of PLZT in the phosphorus-bronze housing support at different frequencies of operation: (a) 1 Hz, (b) 10 Hz, (c) 100 Hz, (d) 500 Hz, (e) 1 KHz, (f) 1.5 KHz, and (g) 2 KHz. The dark color represents colder areas, and bright areas are warmer. The hottest point in the PLZT is marked with a small cross. The black rectangle next to the cross indicates the temperature of the hottest point and is enlarged at the upper right corner of each picture.

Fig. 14
Fig. 14

Summary of the results obtained by the thermal camera pictures.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕ=α+βE+γE2.
Δϕ=ϕt-ϕt=0+=α+βtE+ΔEt+γE+ΔEt2-α+γE2.
ΔϕβtE-2γEΔEt.
ΔEt=βt2γ.
Edet=I021/2xˆ+ŷ expiβEdc+γEdc2xˆ+ŷ2,
Idet=I081-cosβEdc2.
ΔV=ΔEd=Vπ2πcos-11-8IdetI01/2.

Metrics