Abstract

We demonstrate four-dimensional microscopy of defects in integrated circuits by a technique that combines laser-scanning confocal reflectance microscopy with one-photon optical-beam-induced current (1P-OBIC) imaging. Accurate information is obtained about the three-dimensional structure of the defect and the kind of material (metal, semiconductor, or dielectric) that is damaged by the defect. The same focused probe beam simultaneously produces the 1P-OBIC and reflectance signals from the illuminated sample spot. The hardware development cost is minimal for a laser-scanning confocal microscope, and the image reconstruction procedure is computationally efficient. Imaging is demonstrated on defects that are caused by electrical overstress and unwanted generation centers. Exclusive three-dimensional distributions of the semiconductor and metal sites in the integrated circuit reveal defect features that are difficult to recognize with confocal or 1P-OBIC imaging alone.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Richards, P. Footner, The Role of Microscopy in Semiconductor Failure Analysis (Oxford U. Press, New York, 1992).
  2. F. Beck, S. Wilson, Integrated Circuit Failure Analysis: A Guide to Preparation Techniques (Wiley, New York, 1998).
  3. L. Wagner, ed., Failure Analysis of Integrated Circuits: Tools and Techniques (Kluwer Academic, New York, 1999).
    [CrossRef]
  4. R. Ross, C. Boit, eds., Microelectronic Failure Analysis Desk Reference, 4th ed. (ASM International, Materials Park, Ohio, 1999).
  5. R. Anderson, J. Soden, C. Henderson, “Future Technology Challenges for Failure Analysis,” in Proceedings of 21st International Symposium for Testing and Failure Analysis (ASM International, Santa Clara, Calif., 1995), pp. 27–31.
  6. V. Daria, J. Miranda, C. Saloma, “High-contrast images of semiconductor sites via one-photon optical beam-induced current imaging and confocal reflectance microscopy,” Appl. Opt. 41, 4157–4171 (2002).
    [CrossRef] [PubMed]
  7. S. Takasu, “Application of OBIC/OBIRCH/OBHIC (Semiconductor Failure Analysis),” JEOL News 36E(1), 60–63 (2001).
  8. G. Stanciu, M. Oprica, J. Oud, M. Daviti, A. Anagnostopoulos, K. Paraskevopoulos, E. Polychroniadis, “Vapour growth and characterization of HgBr2 crystals using confocal laser scanning microscopy, optical spectroscopy and DC conductivity measurements,” J. Phys. D 32, 1928–1933 (1999).
    [CrossRef]
  9. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  10. C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
    [CrossRef]
  11. C. Xu, “Two-photon laser scanning microscopy for characterization of integrated circuits and optoelectronics,” in Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances (Wiley-Liss, New York, 2001), pp. 539–553.
  12. E. Ramsay, D. Reid, K. Wilsher, “Three-dimensional imaging of a silicon flip chip using the two-photon optical-beam induced current effect,” Appl. Phys. Lett. 81, 7–9 (2002).
    [CrossRef]
  13. V. Daria, C. Blanca, O. Nakamura, S. Kawata, C. Saloma, “Image contrast enhancement for two-photon fluorescence microscopy in turbid medium,” Appl. Opt. 37, 7960–7967 (1998).
    [CrossRef]

2002 (2)

E. Ramsay, D. Reid, K. Wilsher, “Three-dimensional imaging of a silicon flip chip using the two-photon optical-beam induced current effect,” Appl. Phys. Lett. 81, 7–9 (2002).
[CrossRef]

V. Daria, J. Miranda, C. Saloma, “High-contrast images of semiconductor sites via one-photon optical beam-induced current imaging and confocal reflectance microscopy,” Appl. Opt. 41, 4157–4171 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Takasu, “Application of OBIC/OBIRCH/OBHIC (Semiconductor Failure Analysis),” JEOL News 36E(1), 60–63 (2001).

1999 (2)

G. Stanciu, M. Oprica, J. Oud, M. Daviti, A. Anagnostopoulos, K. Paraskevopoulos, E. Polychroniadis, “Vapour growth and characterization of HgBr2 crystals using confocal laser scanning microscopy, optical spectroscopy and DC conductivity measurements,” J. Phys. D 32, 1928–1933 (1999).
[CrossRef]

C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
[CrossRef]

1998 (1)

Anagnostopoulos, A.

G. Stanciu, M. Oprica, J. Oud, M. Daviti, A. Anagnostopoulos, K. Paraskevopoulos, E. Polychroniadis, “Vapour growth and characterization of HgBr2 crystals using confocal laser scanning microscopy, optical spectroscopy and DC conductivity measurements,” J. Phys. D 32, 1928–1933 (1999).
[CrossRef]

Anderson, R.

R. Anderson, J. Soden, C. Henderson, “Future Technology Challenges for Failure Analysis,” in Proceedings of 21st International Symposium for Testing and Failure Analysis (ASM International, Santa Clara, Calif., 1995), pp. 27–31.

Beck, F.

F. Beck, S. Wilson, Integrated Circuit Failure Analysis: A Guide to Preparation Techniques (Wiley, New York, 1998).

Blanca, C.

Daria, V.

Daviti, M.

G. Stanciu, M. Oprica, J. Oud, M. Daviti, A. Anagnostopoulos, K. Paraskevopoulos, E. Polychroniadis, “Vapour growth and characterization of HgBr2 crystals using confocal laser scanning microscopy, optical spectroscopy and DC conductivity measurements,” J. Phys. D 32, 1928–1933 (1999).
[CrossRef]

Denk, W.

C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
[CrossRef]

Footner, P.

B. Richards, P. Footner, The Role of Microscopy in Semiconductor Failure Analysis (Oxford U. Press, New York, 1992).

Henderson, C.

R. Anderson, J. Soden, C. Henderson, “Future Technology Challenges for Failure Analysis,” in Proceedings of 21st International Symposium for Testing and Failure Analysis (ASM International, Santa Clara, Calif., 1995), pp. 27–31.

Kawata, S.

Miranda, J.

Nakamura, O.

Oprica, M.

G. Stanciu, M. Oprica, J. Oud, M. Daviti, A. Anagnostopoulos, K. Paraskevopoulos, E. Polychroniadis, “Vapour growth and characterization of HgBr2 crystals using confocal laser scanning microscopy, optical spectroscopy and DC conductivity measurements,” J. Phys. D 32, 1928–1933 (1999).
[CrossRef]

Oud, J.

G. Stanciu, M. Oprica, J. Oud, M. Daviti, A. Anagnostopoulos, K. Paraskevopoulos, E. Polychroniadis, “Vapour growth and characterization of HgBr2 crystals using confocal laser scanning microscopy, optical spectroscopy and DC conductivity measurements,” J. Phys. D 32, 1928–1933 (1999).
[CrossRef]

Paraskevopoulos, K.

G. Stanciu, M. Oprica, J. Oud, M. Daviti, A. Anagnostopoulos, K. Paraskevopoulos, E. Polychroniadis, “Vapour growth and characterization of HgBr2 crystals using confocal laser scanning microscopy, optical spectroscopy and DC conductivity measurements,” J. Phys. D 32, 1928–1933 (1999).
[CrossRef]

Polychroniadis, E.

G. Stanciu, M. Oprica, J. Oud, M. Daviti, A. Anagnostopoulos, K. Paraskevopoulos, E. Polychroniadis, “Vapour growth and characterization of HgBr2 crystals using confocal laser scanning microscopy, optical spectroscopy and DC conductivity measurements,” J. Phys. D 32, 1928–1933 (1999).
[CrossRef]

Ramsay, E.

E. Ramsay, D. Reid, K. Wilsher, “Three-dimensional imaging of a silicon flip chip using the two-photon optical-beam induced current effect,” Appl. Phys. Lett. 81, 7–9 (2002).
[CrossRef]

Reid, D.

E. Ramsay, D. Reid, K. Wilsher, “Three-dimensional imaging of a silicon flip chip using the two-photon optical-beam induced current effect,” Appl. Phys. Lett. 81, 7–9 (2002).
[CrossRef]

Richards, B.

B. Richards, P. Footner, The Role of Microscopy in Semiconductor Failure Analysis (Oxford U. Press, New York, 1992).

Saloma, C.

Soden, J.

R. Anderson, J. Soden, C. Henderson, “Future Technology Challenges for Failure Analysis,” in Proceedings of 21st International Symposium for Testing and Failure Analysis (ASM International, Santa Clara, Calif., 1995), pp. 27–31.

Stanciu, G.

G. Stanciu, M. Oprica, J. Oud, M. Daviti, A. Anagnostopoulos, K. Paraskevopoulos, E. Polychroniadis, “Vapour growth and characterization of HgBr2 crystals using confocal laser scanning microscopy, optical spectroscopy and DC conductivity measurements,” J. Phys. D 32, 1928–1933 (1999).
[CrossRef]

Takasu, S.

S. Takasu, “Application of OBIC/OBIRCH/OBHIC (Semiconductor Failure Analysis),” JEOL News 36E(1), 60–63 (2001).

Wilsher, K.

E. Ramsay, D. Reid, K. Wilsher, “Three-dimensional imaging of a silicon flip chip using the two-photon optical-beam induced current effect,” Appl. Phys. Lett. 81, 7–9 (2002).
[CrossRef]

Wilson, S.

F. Beck, S. Wilson, Integrated Circuit Failure Analysis: A Guide to Preparation Techniques (Wiley, New York, 1998).

Wilson, T.

T. Wilson, Confocal Microscopy (Academic, London, 1990).

Xu, C.

C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
[CrossRef]

C. Xu, “Two-photon laser scanning microscopy for characterization of integrated circuits and optoelectronics,” in Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances (Wiley-Liss, New York, 2001), pp. 539–553.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

E. Ramsay, D. Reid, K. Wilsher, “Three-dimensional imaging of a silicon flip chip using the two-photon optical-beam induced current effect,” Appl. Phys. Lett. 81, 7–9 (2002).
[CrossRef]

J. Appl. Phys. (1)

C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
[CrossRef]

J. Phys. D (1)

G. Stanciu, M. Oprica, J. Oud, M. Daviti, A. Anagnostopoulos, K. Paraskevopoulos, E. Polychroniadis, “Vapour growth and characterization of HgBr2 crystals using confocal laser scanning microscopy, optical spectroscopy and DC conductivity measurements,” J. Phys. D 32, 1928–1933 (1999).
[CrossRef]

JEOL News (1)

S. Takasu, “Application of OBIC/OBIRCH/OBHIC (Semiconductor Failure Analysis),” JEOL News 36E(1), 60–63 (2001).

Other (7)

T. Wilson, Confocal Microscopy (Academic, London, 1990).

C. Xu, “Two-photon laser scanning microscopy for characterization of integrated circuits and optoelectronics,” in Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances (Wiley-Liss, New York, 2001), pp. 539–553.

B. Richards, P. Footner, The Role of Microscopy in Semiconductor Failure Analysis (Oxford U. Press, New York, 1992).

F. Beck, S. Wilson, Integrated Circuit Failure Analysis: A Guide to Preparation Techniques (Wiley, New York, 1998).

L. Wagner, ed., Failure Analysis of Integrated Circuits: Tools and Techniques (Kluwer Academic, New York, 1999).
[CrossRef]

R. Ross, C. Boit, eds., Microelectronic Failure Analysis Desk Reference, 4th ed. (ASM International, Materials Park, Ohio, 1999).

R. Anderson, J. Soden, C. Henderson, “Future Technology Challenges for Failure Analysis,” in Proceedings of 21st International Symposium for Testing and Failure Analysis (ASM International, Santa Clara, Calif., 1995), pp. 27–31.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

EOS-induced damage (highlighted by white rectangle) in an IC sample: left, confocal image; middle, 1P-OBIC image; right, 3D distribution of semiconductor sites in vicinity of defect. The damage is found in the semiconductor element of the IC sample.

Fig. 2
Fig. 2

EOS-induced damage (highlighted by square) viewed as a confocal or OBIC image. Damage is mostly found in a metal portion of the IC sample. Also shown are examples of exclusive metal (κ = 255) and semiconductor images that were used to generate exclusive 3D distributions [dimensions, 45 μm (length) × 45 μm × 11 μm (maximum height), β = 50] of (top right) metal and (bottom right) sites in the vicinity of EOS damage.

Fig. 3
Fig. 3

Damage caused by an unwanted generation center viewed as (top left) confocal or (bottom left) a 1P-OBIC image. On the right are the exclusive 3D distribution (β = 50) of (top) metal (κ = 255) and (bottom) semiconductor sites in the vicinity of the defect.

Metrics