Abstract

We propose a method for secure wireless transmission of encrypted information. By use of an encryption key, an image or document is optically encrypted by optical heterodyne scanning and hence encryption is performed on the fly. We call this technique optical scanning cryptography. The output of the heterodyne encrypted signal is at radio frequency and can be directly sent through an antenna to a secure site for digital storage to be prepared for decryption. In the secure site, an identical optical scanning system to that used for encryption is used, together with a decryption key, to generate an electrical signal. The electrical signal is then processed and sent to a computer to be used for decryption. Utilizing the stored information received from the encryption stage and the electrical information from the secure site, a digital decryption unit performs a decryption algorithm. If the encryption key and the decryption key are matched, the decryption unit will decrypt the image or document faithfully. The overall cryptosystem can perform the incoherent optical processing counterpart of the well-known coherent double-random phase-encoding technique. We present computer simulations of the idea.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Singh, The Code Book (Random House, New York, 1999).
  2. S. Wiesner, “Conjugate coding,” SIGACT News 15(78), 78–88 (1983); original manuscript written and circulated in 1970.
    [CrossRef]
  3. C. H. Benneett, C. Brassard, A. Ekert, “Quantum cryptography,” Sci. Am. 269(10), 26–33 (1992).
  4. S. Lai, M. A. Neifeld, “Digital wavefront reconstruction and its applications to image encryption,” Opt. Commun. 178, 283–289 (2000).
    [CrossRef]
  5. B. Wang, C.-C. Sun, W.-C. Su, A. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Opt. 39, 4788–4793 (2000).
    [CrossRef]
  6. B. Zhu, S. Liu, Q. Ran, “Optical image encryption based on multifractional Fourier transforms,” Opt. Lett. 25, 1159–1161 (2000).
    [CrossRef]
  7. P. C. Magensen, J. Gluckstad, “Phase-only optical decryption of a fixed mask,” Appl. Opt. 8, 1226–1235 (2001).
    [CrossRef]
  8. H. T. Chang, “Image encryption using separable amplitude-based virtual image and iteratively retrieved phase information,” Opt. Eng. 40, 2165–2171 (2001).
    [CrossRef]
  9. T. Nomura, B. Javidi, “Optical encryption system with a binary key code,” Appl. Opt. 39, 4783–4787 (2000).
    [CrossRef]
  10. O. Matoba, B. Javidi, “Secure ultrafast communication using spatial-temporal converters,” Appl. Opt. 39, 2975–2981 (2000).
    [CrossRef]
  11. E. Tajahuerce, B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000).
    [CrossRef]
  12. E. Tajahuerce, J. Lancis, B. Javidi, P. Andres, “Optical security and encryption with totally incoherent light,” Opt. Lett. 26, 678–680 (2001).
    [CrossRef]
  13. T. Naughton, Y. Frauel, E. Tajahuerce, B. Javidi, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132 (2002).
    [CrossRef] [PubMed]
  14. G. Indebetouw, T.-C. Poon, “Novel approaches of incoherent image processing with emphasis on scanning methods,” Opt. Eng. 31, 2159–2167 (1992).
    [CrossRef]
  15. T.-C. Poon, M. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
    [CrossRef]
  16. A. W. Lohmann, W. T. Rhodes, “Two-pupil synthesis of optical transfer functions,” Appl. Opt. 17, 1145–1151 (1978).
    [CrossRef]
  17. J. Mait, “Pupil-function design for complex incoherent spatial filtering,” J. Opt. Soc. Am. A 4, 1185–1193 (1987).
    [CrossRef]
  18. T.-C. Poon, “Three-dimensional fluorescence microscopy by optical scanning holography,” Opt. Photon. News 8(12), 22–23 (1997).
    [CrossRef]
  19. J. Swoger, M. Martinez-Corral, J. Huisken, E. H. K. Stelzer, “Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy,” J. Opt. Soc. Am. A 19, 1910–1918 (2002).
    [CrossRef]
  20. T.-C. Poon, T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999).
    [CrossRef]
  21. T. Kim, T.-C. Poon, G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
    [CrossRef]
  22. B. W. Schilling, G. C. Templeton, “Three-dimensional remote sensing by optical scanning holography,” Appl. Opt. 40, 5474–5481 (2001).
    [CrossRef]
  23. A. Korpel, “Acousto-optics,” in Applied Solid State Science, R. Wolfe, ed. (Academic, New York, 1972), Vol. 3, pp. 71–75.
  24. B. Schilling, T.-C. Poon, “Real-time pre-processing of holographic information,” Opt. Eng. 34, 3174–3180 (1995).
    [CrossRef]
  25. P. Réfrégier, B. Javidi, “Optical image encryption using input and Fourier plane random phase encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef]
  26. F. Goudail, F. Bollaro, B. Javidi, P. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am. A 15, 2629–2638 (1998).
    [CrossRef]
  27. W. Diffe, M. Hellman, “New directions in cryptography,” IEEE Trans. Inf. Theory IT-22, 644–654 (1976).
    [CrossRef]

2002 (3)

2001 (4)

E. Tajahuerce, J. Lancis, B. Javidi, P. Andres, “Optical security and encryption with totally incoherent light,” Opt. Lett. 26, 678–680 (2001).
[CrossRef]

B. W. Schilling, G. C. Templeton, “Three-dimensional remote sensing by optical scanning holography,” Appl. Opt. 40, 5474–5481 (2001).
[CrossRef]

P. C. Magensen, J. Gluckstad, “Phase-only optical decryption of a fixed mask,” Appl. Opt. 8, 1226–1235 (2001).
[CrossRef]

H. T. Chang, “Image encryption using separable amplitude-based virtual image and iteratively retrieved phase information,” Opt. Eng. 40, 2165–2171 (2001).
[CrossRef]

2000 (6)

1999 (1)

1998 (1)

1997 (1)

T.-C. Poon, “Three-dimensional fluorescence microscopy by optical scanning holography,” Opt. Photon. News 8(12), 22–23 (1997).
[CrossRef]

1996 (1)

T.-C. Poon, M. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

1995 (2)

B. Schilling, T.-C. Poon, “Real-time pre-processing of holographic information,” Opt. Eng. 34, 3174–3180 (1995).
[CrossRef]

P. Réfrégier, B. Javidi, “Optical image encryption using input and Fourier plane random phase encoding,” Opt. Lett. 20, 767–769 (1995).
[CrossRef]

1992 (2)

G. Indebetouw, T.-C. Poon, “Novel approaches of incoherent image processing with emphasis on scanning methods,” Opt. Eng. 31, 2159–2167 (1992).
[CrossRef]

C. H. Benneett, C. Brassard, A. Ekert, “Quantum cryptography,” Sci. Am. 269(10), 26–33 (1992).

1987 (1)

1983 (1)

S. Wiesner, “Conjugate coding,” SIGACT News 15(78), 78–88 (1983); original manuscript written and circulated in 1970.
[CrossRef]

1978 (1)

A. W. Lohmann, W. T. Rhodes, “Two-pupil synthesis of optical transfer functions,” Appl. Opt. 17, 1145–1151 (1978).
[CrossRef]

1976 (1)

W. Diffe, M. Hellman, “New directions in cryptography,” IEEE Trans. Inf. Theory IT-22, 644–654 (1976).
[CrossRef]

Andres, P.

Benneett, C. H.

C. H. Benneett, C. Brassard, A. Ekert, “Quantum cryptography,” Sci. Am. 269(10), 26–33 (1992).

Bollaro, F.

Brassard, C.

C. H. Benneett, C. Brassard, A. Ekert, “Quantum cryptography,” Sci. Am. 269(10), 26–33 (1992).

Chang, H. T.

H. T. Chang, “Image encryption using separable amplitude-based virtual image and iteratively retrieved phase information,” Opt. Eng. 40, 2165–2171 (2001).
[CrossRef]

Chiou, A.

Diffe, W.

W. Diffe, M. Hellman, “New directions in cryptography,” IEEE Trans. Inf. Theory IT-22, 644–654 (1976).
[CrossRef]

Ekert, A.

C. H. Benneett, C. Brassard, A. Ekert, “Quantum cryptography,” Sci. Am. 269(10), 26–33 (1992).

Frauel, Y.

Gluckstad, J.

P. C. Magensen, J. Gluckstad, “Phase-only optical decryption of a fixed mask,” Appl. Opt. 8, 1226–1235 (2001).
[CrossRef]

Goudail, F.

Hellman, M.

W. Diffe, M. Hellman, “New directions in cryptography,” IEEE Trans. Inf. Theory IT-22, 644–654 (1976).
[CrossRef]

Huisken, J.

Indebetouw, G.

T. Kim, T.-C. Poon, G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
[CrossRef]

G. Indebetouw, T.-C. Poon, “Novel approaches of incoherent image processing with emphasis on scanning methods,” Opt. Eng. 31, 2159–2167 (1992).
[CrossRef]

Javidi, B.

Kim, T.

T. Kim, T.-C. Poon, G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
[CrossRef]

T.-C. Poon, T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999).
[CrossRef]

Korpel, A.

A. Korpel, “Acousto-optics,” in Applied Solid State Science, R. Wolfe, ed. (Academic, New York, 1972), Vol. 3, pp. 71–75.

Lai, S.

S. Lai, M. A. Neifeld, “Digital wavefront reconstruction and its applications to image encryption,” Opt. Commun. 178, 283–289 (2000).
[CrossRef]

Lancis, J.

Liu, S.

Lohmann, A. W.

A. W. Lohmann, W. T. Rhodes, “Two-pupil synthesis of optical transfer functions,” Appl. Opt. 17, 1145–1151 (1978).
[CrossRef]

Magensen, P. C.

P. C. Magensen, J. Gluckstad, “Phase-only optical decryption of a fixed mask,” Appl. Opt. 8, 1226–1235 (2001).
[CrossRef]

Mait, J.

Martinez-Corral, M.

Matoba, O.

Naughton, T.

Neifeld, M. A.

S. Lai, M. A. Neifeld, “Digital wavefront reconstruction and its applications to image encryption,” Opt. Commun. 178, 283–289 (2000).
[CrossRef]

Nomura, T.

Poon, T.-C.

T. Kim, T.-C. Poon, G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
[CrossRef]

T.-C. Poon, T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999).
[CrossRef]

T.-C. Poon, “Three-dimensional fluorescence microscopy by optical scanning holography,” Opt. Photon. News 8(12), 22–23 (1997).
[CrossRef]

T.-C. Poon, M. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

B. Schilling, T.-C. Poon, “Real-time pre-processing of holographic information,” Opt. Eng. 34, 3174–3180 (1995).
[CrossRef]

G. Indebetouw, T.-C. Poon, “Novel approaches of incoherent image processing with emphasis on scanning methods,” Opt. Eng. 31, 2159–2167 (1992).
[CrossRef]

Ran, Q.

Réfrégier, P.

Rhodes, W. T.

A. W. Lohmann, W. T. Rhodes, “Two-pupil synthesis of optical transfer functions,” Appl. Opt. 17, 1145–1151 (1978).
[CrossRef]

Schilling, B.

B. Schilling, T.-C. Poon, “Real-time pre-processing of holographic information,” Opt. Eng. 34, 3174–3180 (1995).
[CrossRef]

Schilling, B. W.

Shinoda, K.

T.-C. Poon, M. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

Singh, S.

S. Singh, The Code Book (Random House, New York, 1999).

Stelzer, E. H. K.

Su, W.-C.

Sun, C.-C.

Suzuki, Y.

T.-C. Poon, M. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

Swoger, J.

Tajahuerce, E.

Templeton, G. C.

Wang, B.

Wiesner, S.

S. Wiesner, “Conjugate coding,” SIGACT News 15(78), 78–88 (1983); original manuscript written and circulated in 1970.
[CrossRef]

Wu, M.

T.-C. Poon, M. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

Zhu, B.

Appl. Opt. (9)

IEEE Trans. Inf. Theory (1)

W. Diffe, M. Hellman, “New directions in cryptography,” IEEE Trans. Inf. Theory IT-22, 644–654 (1976).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Commun. (1)

S. Lai, M. A. Neifeld, “Digital wavefront reconstruction and its applications to image encryption,” Opt. Commun. 178, 283–289 (2000).
[CrossRef]

Opt. Eng. (4)

G. Indebetouw, T.-C. Poon, “Novel approaches of incoherent image processing with emphasis on scanning methods,” Opt. Eng. 31, 2159–2167 (1992).
[CrossRef]

H. T. Chang, “Image encryption using separable amplitude-based virtual image and iteratively retrieved phase information,” Opt. Eng. 40, 2165–2171 (2001).
[CrossRef]

T. Kim, T.-C. Poon, G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
[CrossRef]

B. Schilling, T.-C. Poon, “Real-time pre-processing of holographic information,” Opt. Eng. 34, 3174–3180 (1995).
[CrossRef]

Opt. Lett. (3)

Opt. Photon. News (1)

T.-C. Poon, “Three-dimensional fluorescence microscopy by optical scanning holography,” Opt. Photon. News 8(12), 22–23 (1997).
[CrossRef]

Proc. IEEE (1)

T.-C. Poon, M. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

Sci. Am. (1)

C. H. Benneett, C. Brassard, A. Ekert, “Quantum cryptography,” Sci. Am. 269(10), 26–33 (1992).

SIGACT News (1)

S. Wiesner, “Conjugate coding,” SIGACT News 15(78), 78–88 (1983); original manuscript written and circulated in 1970.
[CrossRef]

Other (2)

S. Singh, The Code Book (Random House, New York, 1999).

A. Korpel, “Acousto-optics,” in Applied Solid State Science, R. Wolfe, ed. (Academic, New York, 1972), Vol. 3, pp. 71–75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical system for encryption and decryption [I 0(x, y) is the document to be encrypted, p 1(x, y) is the encryption key in the encryption stage, and p 2(x, y) is the decryption key in the decryption stage]: ⊗’s, electronic multipliers; LPFs, low-pass filters; BPF@Ω, bandpass filter tuned at Ω; PDs, photodetectors.

Fig. 2
Fig. 2

DDU: i(x, y; z c ), encrypted information with encryption key p 1(x, y) = exp[jM(x, y)] inserted into the encryption stage, which is sent from the encryption site by wireless transmission; i(x, y; z d ), signal generated at the decryption stage where decryption key p 2(x, y) = exp[jM(-x, -y)] is inserted into the scanning stage to scan a pinhole aperture.

Fig. 3
Fig. 3

(a) Original incoherent image; (b) real part of the original document multiplied by a random phase mask exp[jr(x, y)] placed immediately in front of the document, not shown in Fig. 1; (c) imaginary part of the original document multiplied by a random phase mask.

Fig. 4
Fig. 4

Top, real and, bottom, imaginary parts of the encryption key, p 1(x, y) = exp[jM(x, y)].

Fig. 5
Fig. 5

Intensity of the encrypted document.

Fig. 6
Fig. 6

(a) Intensity of a decrypted document when the decryption key is matched to the encryption key and the decoding distance is the same as the coding distance and (b) when the decoding distance is not the same as the coding distance.

Fig. 7
Fig. 7

Intensity of decrypted document when the decryption key is not the same as the encryption key but the decoding distance is matched to the coding distance.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

iΩcx, y; zc=ReiΩpx, y; zcexpjΩt,
iΩpx, y; zc=I0x, y; zcOTFΩkx, ky; zc,
OTFΩkx, ky; zc=expj zc2k0kx2+ky2 × p1*x, yp2x+fk0 kx,y+fk0 ky×expj zcfxkx+ykydxdy,
iΩcx, y; zc=ReiΩpx, y; zcexpjΩt=Re-1I0x, y; zc×OTFΩkx, ky; zcexpjΩt,
icx, y; zc=Re-1I0x, y; zc×OTFΩ,
isx, y; zc=Im-1I0x, y; zc×OTFΩ,
ix, y; zc=-1I0x, y; zc×OTFΩ.
OTFΩkx, ky; zc=exp-j zc2k0kx2+ky2×p1*-fk0 kx, -fk0 ky,
ix, y; zc=-1I0x, y; zcexp-j zc2k0×kx2+ky2p1*-fk0 kx, -fk0 ky,
OTFΩkx, ky; zd=expj zd2k0kx2+ky2×p2fk0 kx, fk0 ky.
ix, y; zd=-1expj zd2k0kx2+ky2×p2fk0 kx, fk0 ky.
output of DDU  -1I0x, y; zcexp-j zc2k0×kx2+ky2p1*-fk0 kx, -fk0 ky×expj zd2k0kx2+ky2×p2fk0 kx, fk0 ky =I0x, y; zc
ix, y; zc=I0x, y; zc  -1exp-j zc2k0kx2+ky2  -1p1*-fk0 kx, -fk0 ky.
ix, y; zc=I0x, y; zcexpj2πrx, y -1exp-j zc2k0kx2+ky2  -1p1*-fk0 kx, -fk0 ky.
ix, y; zc=I0x, y; zcexpj2πrx, y -1exp-j zc2k0kx2+ky2 -1exp-j2πM-fkxk0, -fkyk0,
ix, y; zd=-1expj zd2k0kx2+ky2×expj2πM-fkxk0, -fkyk0.
output of DDU  -1I0x, y; zcexpj2πrx, y×exp-j zc2k0kx2+ky2×exp-j2πM-fkxk0, -fkyk0×expj zd2k0kx2+ky2×expj2πM-fkxk0, -fkyk0 =I0x, y; zcexpj2πrx, y,

Metrics