Abstract

Partitioned-field uniaxial volume holographic lenses increase the image fields of holographic volume lenses that are limited by angular selectivity. The efficiency and aberrations of one of these systems consisting of two overlapping uniaxial noncentered lenses were reported previously [Appl. Opt. 38, 4011 (1999)]. In the present study we present theoretical and experimental extensions of these systems to three overlapping lenses, showing how the dynamic range of the recording material can cause an important decrease in efficiency when several gratings are superposed on the same plate.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Latta, “Analysis of multiple hologram optical elements with low dispersion and low aberrations,” Appl. Opt. 11, 1686–1696 (1972).
    [CrossRef] [PubMed]
  2. R. H. Katyl, “Compensating optical systems. 1. Broadband holographic reconstruction,” Appl. Opt. 11, 1241–1247 (1972).
    [CrossRef] [PubMed]
  3. M. Quintanilla, I. Arias, “Holographic imaging lenses. Composite lens with high efficiency,” J. Opt. (Paris) 21, 67–72 (1990).
    [CrossRef]
  4. N. Servagent, S. Habraken, Y. Lion, Y. Renotte, “Hologrammes accoles,” in 13th European Symposium on Optoelectronics OPTO’93 (ESI Publications, Paris, 1993), pp. 578–583.
  5. R. R. A. Syms, L. Solymar, “The effect of angular selectivity on the monochromatic imaging performance of volume holographic lenses,” Opt. Acta 30, 1303–1318 (1983).
    [CrossRef]
  6. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  7. J. Atencia, I. Arias, M. Quintanilla, A. García, A. M. López, “Field improvement in a uniaxial centered lens composed of two stacked-volume holographic elements,” Appl. Opt. 38, 4011–4018 (1999).
    [CrossRef]
  8. A. M. López, J. Atencia, J. Tornos, M. Quintanilla, “Partitioned-field uniaxial holographic lenses,” Appl. Opt. 41, 1872–1881 (2002).
    [CrossRef] [PubMed]
  9. E. N. Leith, J. Upatnieks, “Zone plate with aberration correction,” J. Opt. Soc. Am. 57, 699–700 (1967).
    [CrossRef]
  10. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes for fortran (Cambridge U. Press, Cambridge, 1989), p. 548.
  11. M. V. Collados, I. Arias, A. García, J. Atencia, M. Quintanilla, “Silver halide sensitized gelatin process effects in holographic lenses recorded on Slavich PFG-01 plates,” Appl. Opt. 42, 805–810 (2003).
    [CrossRef] [PubMed]
  12. R. A. Ferrante, “Silver halide gelatin spatial frequency response,” Appl. Opt. 23, 4180–4181 (1984).
    [CrossRef] [PubMed]
  13. H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, Berlin, 1993), p. 372.
  14. N. Phillips, “Benign bleaching for health holography,” Holosphere 14, 21–22 (1986).
  15. R. R. A. Syms, L. Solymar, “Planar volume phase holograms formed in bleached photographic emulsions,” Appl. Opt. 22, 1479–1496 (1983).
    [CrossRef] [PubMed]
  16. C. G. Stojanoff, O. Brasseur, S. Tropartz, H. Schütte, “Conceptual design and practical implementation of dichromated gelatin films as an optimal holographic recording material for large format holograms,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 301–311 (1994).
    [CrossRef]
  17. C. Neipp, I. Pascual, A. Beléndez, “Bleached silver halide volume holograms recorded on Slavich PFG-01 emulsion: the influence of the developer,” J. Mod. Opt. 48, 1479–1494 (2001).
    [CrossRef]
  18. R. Alferness, S. K. Case, “Coupling in doubly exposed, thick holographic gratings,” J. Opt. Soc. Am. 65, 730–739 (1975).
    [CrossRef]

2003 (1)

2002 (1)

2001 (1)

C. Neipp, I. Pascual, A. Beléndez, “Bleached silver halide volume holograms recorded on Slavich PFG-01 emulsion: the influence of the developer,” J. Mod. Opt. 48, 1479–1494 (2001).
[CrossRef]

1999 (1)

1990 (1)

M. Quintanilla, I. Arias, “Holographic imaging lenses. Composite lens with high efficiency,” J. Opt. (Paris) 21, 67–72 (1990).
[CrossRef]

1986 (1)

N. Phillips, “Benign bleaching for health holography,” Holosphere 14, 21–22 (1986).

1984 (1)

1983 (2)

R. R. A. Syms, L. Solymar, “The effect of angular selectivity on the monochromatic imaging performance of volume holographic lenses,” Opt. Acta 30, 1303–1318 (1983).
[CrossRef]

R. R. A. Syms, L. Solymar, “Planar volume phase holograms formed in bleached photographic emulsions,” Appl. Opt. 22, 1479–1496 (1983).
[CrossRef] [PubMed]

1975 (1)

1972 (2)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

1967 (1)

Alferness, R.

Arias, I.

Atencia, J.

Beléndez, A.

C. Neipp, I. Pascual, A. Beléndez, “Bleached silver halide volume holograms recorded on Slavich PFG-01 emulsion: the influence of the developer,” J. Mod. Opt. 48, 1479–1494 (2001).
[CrossRef]

Bjelkhagen, H. I.

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, Berlin, 1993), p. 372.

Brasseur, O.

C. G. Stojanoff, O. Brasseur, S. Tropartz, H. Schütte, “Conceptual design and practical implementation of dichromated gelatin films as an optimal holographic recording material for large format holograms,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 301–311 (1994).
[CrossRef]

Case, S. K.

Collados, M. V.

Ferrante, R. A.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes for fortran (Cambridge U. Press, Cambridge, 1989), p. 548.

García, A.

Habraken, S.

N. Servagent, S. Habraken, Y. Lion, Y. Renotte, “Hologrammes accoles,” in 13th European Symposium on Optoelectronics OPTO’93 (ESI Publications, Paris, 1993), pp. 578–583.

Katyl, R. H.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Latta, J. N.

Leith, E. N.

Lion, Y.

N. Servagent, S. Habraken, Y. Lion, Y. Renotte, “Hologrammes accoles,” in 13th European Symposium on Optoelectronics OPTO’93 (ESI Publications, Paris, 1993), pp. 578–583.

López, A. M.

Neipp, C.

C. Neipp, I. Pascual, A. Beléndez, “Bleached silver halide volume holograms recorded on Slavich PFG-01 emulsion: the influence of the developer,” J. Mod. Opt. 48, 1479–1494 (2001).
[CrossRef]

Pascual, I.

C. Neipp, I. Pascual, A. Beléndez, “Bleached silver halide volume holograms recorded on Slavich PFG-01 emulsion: the influence of the developer,” J. Mod. Opt. 48, 1479–1494 (2001).
[CrossRef]

Phillips, N.

N. Phillips, “Benign bleaching for health holography,” Holosphere 14, 21–22 (1986).

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes for fortran (Cambridge U. Press, Cambridge, 1989), p. 548.

Quintanilla, M.

Renotte, Y.

N. Servagent, S. Habraken, Y. Lion, Y. Renotte, “Hologrammes accoles,” in 13th European Symposium on Optoelectronics OPTO’93 (ESI Publications, Paris, 1993), pp. 578–583.

Schütte, H.

C. G. Stojanoff, O. Brasseur, S. Tropartz, H. Schütte, “Conceptual design and practical implementation of dichromated gelatin films as an optimal holographic recording material for large format holograms,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 301–311 (1994).
[CrossRef]

Servagent, N.

N. Servagent, S. Habraken, Y. Lion, Y. Renotte, “Hologrammes accoles,” in 13th European Symposium on Optoelectronics OPTO’93 (ESI Publications, Paris, 1993), pp. 578–583.

Solymar, L.

R. R. A. Syms, L. Solymar, “The effect of angular selectivity on the monochromatic imaging performance of volume holographic lenses,” Opt. Acta 30, 1303–1318 (1983).
[CrossRef]

R. R. A. Syms, L. Solymar, “Planar volume phase holograms formed in bleached photographic emulsions,” Appl. Opt. 22, 1479–1496 (1983).
[CrossRef] [PubMed]

Stojanoff, C. G.

C. G. Stojanoff, O. Brasseur, S. Tropartz, H. Schütte, “Conceptual design and practical implementation of dichromated gelatin films as an optimal holographic recording material for large format holograms,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 301–311 (1994).
[CrossRef]

Syms, R. R. A.

R. R. A. Syms, L. Solymar, “The effect of angular selectivity on the monochromatic imaging performance of volume holographic lenses,” Opt. Acta 30, 1303–1318 (1983).
[CrossRef]

R. R. A. Syms, L. Solymar, “Planar volume phase holograms formed in bleached photographic emulsions,” Appl. Opt. 22, 1479–1496 (1983).
[CrossRef] [PubMed]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes for fortran (Cambridge U. Press, Cambridge, 1989), p. 548.

Tornos, J.

Tropartz, S.

C. G. Stojanoff, O. Brasseur, S. Tropartz, H. Schütte, “Conceptual design and practical implementation of dichromated gelatin films as an optimal holographic recording material for large format holograms,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 301–311 (1994).
[CrossRef]

Upatnieks, J.

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes for fortran (Cambridge U. Press, Cambridge, 1989), p. 548.

Appl. Opt. (7)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Holosphere (1)

N. Phillips, “Benign bleaching for health holography,” Holosphere 14, 21–22 (1986).

J. Mod. Opt. (1)

C. Neipp, I. Pascual, A. Beléndez, “Bleached silver halide volume holograms recorded on Slavich PFG-01 emulsion: the influence of the developer,” J. Mod. Opt. 48, 1479–1494 (2001).
[CrossRef]

J. Opt. (Paris) (1)

M. Quintanilla, I. Arias, “Holographic imaging lenses. Composite lens with high efficiency,” J. Opt. (Paris) 21, 67–72 (1990).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Acta (1)

R. R. A. Syms, L. Solymar, “The effect of angular selectivity on the monochromatic imaging performance of volume holographic lenses,” Opt. Acta 30, 1303–1318 (1983).
[CrossRef]

Other (4)

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, Berlin, 1993), p. 372.

C. G. Stojanoff, O. Brasseur, S. Tropartz, H. Schütte, “Conceptual design and practical implementation of dichromated gelatin films as an optimal holographic recording material for large format holograms,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 301–311 (1994).
[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes for fortran (Cambridge U. Press, Cambridge, 1989), p. 548.

N. Servagent, S. Habraken, Y. Lion, Y. Renotte, “Hologrammes accoles,” in 13th European Symposium on Optoelectronics OPTO’93 (ESI Publications, Paris, 1993), pp. 578–583.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Recording and reconstruction geometry for the uniaxial compound system.

Fig. 2
Fig. 2

Recording and reconstruction of the three lenses that comprise the final uniaxial lens.

Fig. 3
Fig. 3

(a) Schematic of the limited image field of the compound uniaxial system of Fig. 1. (b) Extension of the field in the η direction produced by the proposed partitioned-field lens with three multiplexed uniaxial elements of Fig. 2.

Fig. 4
Fig. 4

Efficiency curves of the three uniaxial systems taken independently.

Fig. 5
Fig. 5

Diffraction efficiency at the image for the partitioned-field lens as a function of the object η coordinate (ξ = 0) for two geometric conditions. Geometry 1: r 11 = r 12 cos α2 = r 13 cos α3 = -130 mm, α1 = 0, α2 = -7.9°, α3 = 7.9°, α1′ = 30°, α2′ = -40°, α3′ = 40°. Geometry 2: same parameters as for geometry 1, except that α3′ = -23°.

Fig. 6
Fig. 6

Relative efficiency (η r ) and effective efficiency (η e ) as functions of exposure for gratings recorded on PFG-01 plates and processed with the scheme described in Table 1.

Fig. 7
Fig. 7

Refractive-index modulation as a function of exposure obtained from values of Fig. 6.

Fig. 8
Fig. 8

Glass transmittance, zero-order efficiency, and first-order efficiency as functions of reconstructed angle of two off-axis symmetrical lenses superposed on the same plate, with exposures (a) E m /2 and (b) E m .

Fig. 9
Fig. 9

(a) Glass transmittance, zero-order efficiency, and first order-efficiency as functions of reconstructed angle of three off-axis lenses superposed on the same plate, each one with exposure E m/4. (b) Zero-order efficiency of zone B and its theoretical fit.

Fig. 10
Fig. 10

First-order efficiency of the uniaxial compound lens as a function of incidence angle.

Fig. 11
Fig. 11

Image of a square distribution with a 5-mm period given by the threefold compound uniaxial lens.

Tables (2)

Tables Icon

Table 1 Steps in Developing for PFG-01 Plates

Tables Icon

Table 2 Fitting Parameters for Three Lenses Superposed on the Same Plate

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

r1j cos αj=const. j,
εr=ε0+Δε1 cosK1r · r+Δε2 cosK2r · r+Δε3 cosK3r · r.
E=E1+E1 cosKr · r+φ,
Δnr=n1+n1 cosKr · r+φ,
Δnr=j=1j=N n1j+j=1j=N n1j cosKjr · r+φj.
Δnr=Nn1+n12n1m.
ηr=IdId+I0,
ηe=IdIi,
ηr=sin2πn1dλcos αR cos αS1/2,

Metrics