Abstract

Optical functions of cobalt phthalocyanine, nickel phthalocyanine (NiPc), and iron phthalocyanine (FePc) have been determined by use of spectroscopic ellipsometry in the spectral range 1.55–4.1 eV (300–800 nm). The samples were prepared by evaporation onto glass and silicon substrates. The optical functions were determined by point-to-point fit. Absorption spectra were also measured. The index-of-refraction data for NiPc and FePc are reported for the first time to our knowledge. Good agreement with the experimental spectra was obtained for all three materials.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Wöhrle, L. Kreienhoop, D. Schlettwein, “Phthalocyanines and related macrocycles in organic photovoltaic junctions,” in Phthalocyanines: Properties and Applications, C. C. Leznoff, A. B. P. Lever, eds. (VCH, New York, 1996), pp. 219–284.
  2. P. Peumans, V. Bulović, S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76, 2650–2652 (2000).
    [CrossRef]
  3. M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
    [CrossRef]
  4. Z. Bao, A. J. Lovinger, A. Dodabalapur, “Organic field-effect transistors with high mobility based on copper phthalocyanine,” Appl. Phys. Lett. 69, 3066–3068 (1996).
    [CrossRef]
  5. J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
    [CrossRef]
  6. X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer,” Appl. Phys. Lett. 78, 410–412 (2001).
    [CrossRef]
  7. A. Fujii, Y. Ohmori, K. Yoshino, “An organic infrared electroluminescent diode utilizing a phthalocyanine film,” IEEE Trans. Electron Devices 44, 1204–1207 (1997).
    [CrossRef]
  8. T. Nagasawa, K. Murakami, K. Watanabe, “Improvement in NO2-sensing characteristics of alpha-copper phthalocyanine thin films by the deposition on the hydrofluoric acid-treated glass substrates,” Mol. Cryst. Liq. Cryst. 316, 389–392 (1998).
    [CrossRef]
  9. M. I. Newton, T. K. H. Starke, M. R. Willis, G. McHale, “NO2 detection at room temperature with copper phthalocyanine thin film devices,” Sens. Actuators B 67, 307–311 (2000).
    [CrossRef]
  10. T. Fritz, J. Hahn, H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
    [CrossRef]
  11. B. H. Schechtman, W. E. Spicer, “Near infrared to vacuum ultraviolet absorption spectra and the optical constants of phthalocyanine and porphyrin films,” J. Mol. Spectrosc. 33, 28–48 (1970).
    [CrossRef]
  12. M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. Copper phthalocyanine,” J. Vac. Sci. Technol. A 10, 2816–2821 (1992).
    [CrossRef]
  13. A. Ritz, H. Lüth, “The electronic structure of GaP (110) and Cu-phthalocyanine overlayers studied by ellipsometry,” Appl. Phys. A 31, 75–80 (1983).
    [CrossRef]
  14. Q. Chen, D. Gu, F. Gan, “Ellipsometric spectra of cobalt phthalocyanine films,” Physica B 212, 189–194 (1995).
    [CrossRef]
  15. E. A. Lucia, F. D. Verderame, “Spectra of polycrystalline phthalocyanines in the visible region,” J. Chem. Phys. 48, 2674–2681 (1968).
    [CrossRef]
  16. H. Laurs, G. Heiland, “Electrical and optical properties of phthalocyanine films,” Thin Solid Films 149, 129–142 (1987).
    [CrossRef]
  17. A. T. Davidson, “The effect of the metal atom on the absorption spectra of phthalocyanine films,” J. Chem. Phys. 77, 168–172 (1982).
    [CrossRef]
  18. L. Edwards, M. Gouterman, “Porphyrins. XV. Vapor absorption spectra and stability: phthalocyanines,” J. Mol. Spectrosc. 33, 292–310 (1970).
    [CrossRef]
  19. P. E. Fielding, A. G. MacKay, “Electrical conduction in the phthalocyanines. I. Optical properties,” Aust. J. Chem. 17, 750–758 (1964).
    [CrossRef]
  20. A. Schmidt, L. K. Chau, A. Back, N. Armstrong, “Epitaxial phthalocyanine ultrathin films grown by organic molecular beam epitaxy (OMBE),” in Phthalocyanines: Properties and Applications, C. C. Leznoff, A. B. P. Lever, eds., (VCH, New York, 1996), pp. 307–341.
  21. H. Hoshi, A. J. Dann, Y. Maruyama, “The structure and properties of phthalocyanine films grown by the molecular-beam epitaxy technique. II. Ultraviolet/visible spectroscopic study,” J. Appl. Phys. 67, 1845–1849 (1990).
    [CrossRef]
  22. B. Resel, M. Ottmar, M. Hanack, J. Keckes, B. Leising, “Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates,” J. Mater. Res. 15, 934–939 (2000).
    [CrossRef]
  23. N. Uyeda, M. Ashida, E. Suito, “Orientation overgrowth of condensed polycyclic aromatic compounds vacuum-evaporated on cleaved face of mica,” J. Appl. Phys. 36, 1453–1460 (1965).
    [CrossRef]
  24. H. Wachtel, J. C. Wittmann, B. Lotz, M. A. Petit, J. J. Andre, “Anisotropic spin transport in oriented lithium phthalocyanine thin films,” Thin Solid Films 250, 219–231 (1994).
    [CrossRef]
  25. M. Brinkmann, J. C. Wittmann, C. Chaumont, J. J. Andre, “Effects of solvent on the morphology and crystalline structure of lithium phthalocyanine thin films and powders,” Thin Solid Films 292, 192–203 (1997).
    [CrossRef]
  26. O. Berger, W. J. Fischer, B. Adolphi, S. Tierbach, V. Melev, J. Schreiber, “Studies on phase transformations of Cu phthalocyanine thin films,” J. Mater. Sci. Mater. Electron. 11, 331–346 (2000).
    [CrossRef]
  27. J. H. Sharp, M. Lardon, “Spectroscopic characterization of a new polymorph of metal free phthalocyanine,” J. Phys. Chem. 72, 3230–3235 (1968).
    [CrossRef]
  28. S. M. Bayliss, S. Heutz, G. Rumbles, T. S. Jones, “Effect of annealing on the properties of thin films of free base phthalocyanine and perylene-3,4,9,10 tetracarboxylic dianhydride deposited by organic molecular beam deposition,” Mater. Res. Soc. Symp. Proc. 560, 71–74 (1999).
    [CrossRef]
  29. F. Iwatsu, T. Kobayashi, N. Uyeda, “Solvent effects on crystal growth and transformation of zinc phthalocyanine,” J. Phys. Chem. 84, 3223–3230 (1980).
    [CrossRef]
  30. F. Iwatsu, “Size effects on the alpha–beta transformation of phthalocyanine crystals,” J. Phys. Chem. 92, 1678–1681 (1988).
    [CrossRef]
  31. S. I. Shihub, R. D. Gould, “Studies of phase transformations in some metal phthalocyanine thin films using measurements of current as a function of temperature,” Thin Solid Films 290-291, 390–394 (1996).
    [CrossRef]
  32. S. M. Bayliss, S. Heutz, R. Cloots, R. L. Middleton, G. Rumbles, T. S. Jones, “Templating effects in the growth of metal-free phthalocyanine polymorphic double layers,” Adv. Mater. 12, 202–206 (2000).
    [CrossRef]
  33. M. K. Debe, R. J. Poirier, K. K. Kam, “Organic-thin-film-induced molecular epitaxy from the vapor phase,” Thin Solid Films 197, 335–347 (1991).
    [CrossRef]
  34. M. Komiyama, Y. Sakakibara, H. Hirai, “Preparation of highly ordered ultrathin films of copper(II) phthalocyanine on amorphous substrates by molecular beam deposition,” Thin Solid Films 151, L109–L110 (1987).
    [CrossRef]
  35. P. S. Vincett, Z. D. Popovic, D. McIntyre, “A novel structural singularity in vacuum-deposited thin films: the mechanism of critical optimization of thin film properties,” Thin Solid Films 82, 357–376 (1981).
    [CrossRef]
  36. M. A. Barrett, Z. Borkowska, M. W. Humphreys, R. Parsons, “Ellipsometry of thin films of copper phthalocyanine,” Thin Solid Films 28, 289–302 (1975).
    [CrossRef]
  37. D. E. Aspnes, “Precision bounds to ellipsometer systems,” Appl. Opt. 14, 1131–1136 (1975).
    [CrossRef] [PubMed]
  38. A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797–48903 (1997).
    [CrossRef]
  39. J. Märtensson, H. Arwin, “Applications of derivative line-shape fitting to ellipsometric spectra of thin films of metal-substituted phthalocyanines,” Thin Solid Films 205, 252–257 (1991).
    [CrossRef]
  40. A. B. Djurišić, T. Fritz, K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
    [CrossRef]
  41. B. Masenelli, S. Callard, A. Gagnaire, J. Joseph, “Fabrication and characterization of organic semiconductor-based microcavities,” Thin Solid Films 364, 264–268 (2000).
    [CrossRef]
  42. Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M. Li, S. Y. Shen, D. H. Huang, “Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (VOPc) films fabricated by vacuum deposition,” Appl. Phys. A 66, 569–573 (1998).
    [CrossRef]
  43. P. N. Day, Z. Wang, R. Pachter, “Calculation of the structure and absorption spectra of phthalocyanines in the gas-phase and in solution,” Thermochem. Acta 455, 33–50 (1998).
  44. J. Godlewski, J. Kalinowski, S. Stizza, I. Davoli, R. Bernardini, “Asymmetries in the optical properties of vacuum-deposited organic films illuminated at the substrate and non-substrate surfaces,” Thin Solid Films 146, 115–132 (1987).
    [CrossRef]

2001 (1)

X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer,” Appl. Phys. Lett. 78, 410–412 (2001).
[CrossRef]

2000 (8)

P. Peumans, V. Bulović, S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76, 2650–2652 (2000).
[CrossRef]

M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
[CrossRef]

M. I. Newton, T. K. H. Starke, M. R. Willis, G. McHale, “NO2 detection at room temperature with copper phthalocyanine thin film devices,” Sens. Actuators B 67, 307–311 (2000).
[CrossRef]

B. Resel, M. Ottmar, M. Hanack, J. Keckes, B. Leising, “Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates,” J. Mater. Res. 15, 934–939 (2000).
[CrossRef]

O. Berger, W. J. Fischer, B. Adolphi, S. Tierbach, V. Melev, J. Schreiber, “Studies on phase transformations of Cu phthalocyanine thin films,” J. Mater. Sci. Mater. Electron. 11, 331–346 (2000).
[CrossRef]

S. M. Bayliss, S. Heutz, R. Cloots, R. L. Middleton, G. Rumbles, T. S. Jones, “Templating effects in the growth of metal-free phthalocyanine polymorphic double layers,” Adv. Mater. 12, 202–206 (2000).
[CrossRef]

A. B. Djurišić, T. Fritz, K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
[CrossRef]

B. Masenelli, S. Callard, A. Gagnaire, J. Joseph, “Fabrication and characterization of organic semiconductor-based microcavities,” Thin Solid Films 364, 264–268 (2000).
[CrossRef]

1999 (1)

S. M. Bayliss, S. Heutz, G. Rumbles, T. S. Jones, “Effect of annealing on the properties of thin films of free base phthalocyanine and perylene-3,4,9,10 tetracarboxylic dianhydride deposited by organic molecular beam deposition,” Mater. Res. Soc. Symp. Proc. 560, 71–74 (1999).
[CrossRef]

1998 (4)

J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
[CrossRef]

T. Nagasawa, K. Murakami, K. Watanabe, “Improvement in NO2-sensing characteristics of alpha-copper phthalocyanine thin films by the deposition on the hydrofluoric acid-treated glass substrates,” Mol. Cryst. Liq. Cryst. 316, 389–392 (1998).
[CrossRef]

Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M. Li, S. Y. Shen, D. H. Huang, “Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (VOPc) films fabricated by vacuum deposition,” Appl. Phys. A 66, 569–573 (1998).
[CrossRef]

P. N. Day, Z. Wang, R. Pachter, “Calculation of the structure and absorption spectra of phthalocyanines in the gas-phase and in solution,” Thermochem. Acta 455, 33–50 (1998).

1997 (3)

A. Fujii, Y. Ohmori, K. Yoshino, “An organic infrared electroluminescent diode utilizing a phthalocyanine film,” IEEE Trans. Electron Devices 44, 1204–1207 (1997).
[CrossRef]

M. Brinkmann, J. C. Wittmann, C. Chaumont, J. J. Andre, “Effects of solvent on the morphology and crystalline structure of lithium phthalocyanine thin films and powders,” Thin Solid Films 292, 192–203 (1997).
[CrossRef]

A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797–48903 (1997).
[CrossRef]

1996 (2)

Z. Bao, A. J. Lovinger, A. Dodabalapur, “Organic field-effect transistors with high mobility based on copper phthalocyanine,” Appl. Phys. Lett. 69, 3066–3068 (1996).
[CrossRef]

S. I. Shihub, R. D. Gould, “Studies of phase transformations in some metal phthalocyanine thin films using measurements of current as a function of temperature,” Thin Solid Films 290-291, 390–394 (1996).
[CrossRef]

1995 (1)

Q. Chen, D. Gu, F. Gan, “Ellipsometric spectra of cobalt phthalocyanine films,” Physica B 212, 189–194 (1995).
[CrossRef]

1994 (1)

H. Wachtel, J. C. Wittmann, B. Lotz, M. A. Petit, J. J. Andre, “Anisotropic spin transport in oriented lithium phthalocyanine thin films,” Thin Solid Films 250, 219–231 (1994).
[CrossRef]

1992 (1)

M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. Copper phthalocyanine,” J. Vac. Sci. Technol. A 10, 2816–2821 (1992).
[CrossRef]

1991 (2)

J. Märtensson, H. Arwin, “Applications of derivative line-shape fitting to ellipsometric spectra of thin films of metal-substituted phthalocyanines,” Thin Solid Films 205, 252–257 (1991).
[CrossRef]

M. K. Debe, R. J. Poirier, K. K. Kam, “Organic-thin-film-induced molecular epitaxy from the vapor phase,” Thin Solid Films 197, 335–347 (1991).
[CrossRef]

1990 (1)

H. Hoshi, A. J. Dann, Y. Maruyama, “The structure and properties of phthalocyanine films grown by the molecular-beam epitaxy technique. II. Ultraviolet/visible spectroscopic study,” J. Appl. Phys. 67, 1845–1849 (1990).
[CrossRef]

1989 (1)

T. Fritz, J. Hahn, H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
[CrossRef]

1988 (1)

F. Iwatsu, “Size effects on the alpha–beta transformation of phthalocyanine crystals,” J. Phys. Chem. 92, 1678–1681 (1988).
[CrossRef]

1987 (3)

M. Komiyama, Y. Sakakibara, H. Hirai, “Preparation of highly ordered ultrathin films of copper(II) phthalocyanine on amorphous substrates by molecular beam deposition,” Thin Solid Films 151, L109–L110 (1987).
[CrossRef]

H. Laurs, G. Heiland, “Electrical and optical properties of phthalocyanine films,” Thin Solid Films 149, 129–142 (1987).
[CrossRef]

J. Godlewski, J. Kalinowski, S. Stizza, I. Davoli, R. Bernardini, “Asymmetries in the optical properties of vacuum-deposited organic films illuminated at the substrate and non-substrate surfaces,” Thin Solid Films 146, 115–132 (1987).
[CrossRef]

1983 (1)

A. Ritz, H. Lüth, “The electronic structure of GaP (110) and Cu-phthalocyanine overlayers studied by ellipsometry,” Appl. Phys. A 31, 75–80 (1983).
[CrossRef]

1982 (1)

A. T. Davidson, “The effect of the metal atom on the absorption spectra of phthalocyanine films,” J. Chem. Phys. 77, 168–172 (1982).
[CrossRef]

1981 (1)

P. S. Vincett, Z. D. Popovic, D. McIntyre, “A novel structural singularity in vacuum-deposited thin films: the mechanism of critical optimization of thin film properties,” Thin Solid Films 82, 357–376 (1981).
[CrossRef]

1980 (1)

F. Iwatsu, T. Kobayashi, N. Uyeda, “Solvent effects on crystal growth and transformation of zinc phthalocyanine,” J. Phys. Chem. 84, 3223–3230 (1980).
[CrossRef]

1975 (2)

M. A. Barrett, Z. Borkowska, M. W. Humphreys, R. Parsons, “Ellipsometry of thin films of copper phthalocyanine,” Thin Solid Films 28, 289–302 (1975).
[CrossRef]

D. E. Aspnes, “Precision bounds to ellipsometer systems,” Appl. Opt. 14, 1131–1136 (1975).
[CrossRef] [PubMed]

1970 (2)

L. Edwards, M. Gouterman, “Porphyrins. XV. Vapor absorption spectra and stability: phthalocyanines,” J. Mol. Spectrosc. 33, 292–310 (1970).
[CrossRef]

B. H. Schechtman, W. E. Spicer, “Near infrared to vacuum ultraviolet absorption spectra and the optical constants of phthalocyanine and porphyrin films,” J. Mol. Spectrosc. 33, 28–48 (1970).
[CrossRef]

1968 (2)

E. A. Lucia, F. D. Verderame, “Spectra of polycrystalline phthalocyanines in the visible region,” J. Chem. Phys. 48, 2674–2681 (1968).
[CrossRef]

J. H. Sharp, M. Lardon, “Spectroscopic characterization of a new polymorph of metal free phthalocyanine,” J. Phys. Chem. 72, 3230–3235 (1968).
[CrossRef]

1965 (1)

N. Uyeda, M. Ashida, E. Suito, “Orientation overgrowth of condensed polycyclic aromatic compounds vacuum-evaporated on cleaved face of mica,” J. Appl. Phys. 36, 1453–1460 (1965).
[CrossRef]

1964 (1)

P. E. Fielding, A. G. MacKay, “Electrical conduction in the phthalocyanines. I. Optical properties,” Aust. J. Chem. 17, 750–758 (1964).
[CrossRef]

Adolphi, B.

O. Berger, W. J. Fischer, B. Adolphi, S. Tierbach, V. Melev, J. Schreiber, “Studies on phase transformations of Cu phthalocyanine thin films,” J. Mater. Sci. Mater. Electron. 11, 331–346 (2000).
[CrossRef]

Andre, J. J.

M. Brinkmann, J. C. Wittmann, C. Chaumont, J. J. Andre, “Effects of solvent on the morphology and crystalline structure of lithium phthalocyanine thin films and powders,” Thin Solid Films 292, 192–203 (1997).
[CrossRef]

H. Wachtel, J. C. Wittmann, B. Lotz, M. A. Petit, J. J. Andre, “Anisotropic spin transport in oriented lithium phthalocyanine thin films,” Thin Solid Films 250, 219–231 (1994).
[CrossRef]

Armstrong, N.

A. Schmidt, L. K. Chau, A. Back, N. Armstrong, “Epitaxial phthalocyanine ultrathin films grown by organic molecular beam epitaxy (OMBE),” in Phthalocyanines: Properties and Applications, C. C. Leznoff, A. B. P. Lever, eds., (VCH, New York, 1996), pp. 307–341.

Arwin, H.

J. Märtensson, H. Arwin, “Applications of derivative line-shape fitting to ellipsometric spectra of thin films of metal-substituted phthalocyanines,” Thin Solid Films 205, 252–257 (1991).
[CrossRef]

Ashida, M.

N. Uyeda, M. Ashida, E. Suito, “Orientation overgrowth of condensed polycyclic aromatic compounds vacuum-evaporated on cleaved face of mica,” J. Appl. Phys. 36, 1453–1460 (1965).
[CrossRef]

Aspnes, D. E.

Back, A.

A. Schmidt, L. K. Chau, A. Back, N. Armstrong, “Epitaxial phthalocyanine ultrathin films grown by organic molecular beam epitaxy (OMBE),” in Phthalocyanines: Properties and Applications, C. C. Leznoff, A. B. P. Lever, eds., (VCH, New York, 1996), pp. 307–341.

Bao, Z.

Z. Bao, A. J. Lovinger, A. Dodabalapur, “Organic field-effect transistors with high mobility based on copper phthalocyanine,” Appl. Phys. Lett. 69, 3066–3068 (1996).
[CrossRef]

Barrett, M. A.

M. A. Barrett, Z. Borkowska, M. W. Humphreys, R. Parsons, “Ellipsometry of thin films of copper phthalocyanine,” Thin Solid Films 28, 289–302 (1975).
[CrossRef]

Bayliss, S. M.

S. M. Bayliss, S. Heutz, R. Cloots, R. L. Middleton, G. Rumbles, T. S. Jones, “Templating effects in the growth of metal-free phthalocyanine polymorphic double layers,” Adv. Mater. 12, 202–206 (2000).
[CrossRef]

S. M. Bayliss, S. Heutz, G. Rumbles, T. S. Jones, “Effect of annealing on the properties of thin films of free base phthalocyanine and perylene-3,4,9,10 tetracarboxylic dianhydride deposited by organic molecular beam deposition,” Mater. Res. Soc. Symp. Proc. 560, 71–74 (1999).
[CrossRef]

Berger, O.

O. Berger, W. J. Fischer, B. Adolphi, S. Tierbach, V. Melev, J. Schreiber, “Studies on phase transformations of Cu phthalocyanine thin films,” J. Mater. Sci. Mater. Electron. 11, 331–346 (2000).
[CrossRef]

Bernardini, R.

J. Godlewski, J. Kalinowski, S. Stizza, I. Davoli, R. Bernardini, “Asymmetries in the optical properties of vacuum-deposited organic films illuminated at the substrate and non-substrate surfaces,” Thin Solid Films 146, 115–132 (1987).
[CrossRef]

Beyer, A.

M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
[CrossRef]

Blochwitz, J.

X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer,” Appl. Phys. Lett. 78, 410–412 (2001).
[CrossRef]

J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
[CrossRef]

Borkowska, Z.

M. A. Barrett, Z. Borkowska, M. W. Humphreys, R. Parsons, “Ellipsometry of thin films of copper phthalocyanine,” Thin Solid Films 28, 289–302 (1975).
[CrossRef]

Böttcher, H.

T. Fritz, J. Hahn, H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
[CrossRef]

Brinkmann, M.

M. Brinkmann, J. C. Wittmann, C. Chaumont, J. J. Andre, “Effects of solvent on the morphology and crystalline structure of lithium phthalocyanine thin films and powders,” Thin Solid Films 292, 192–203 (1997).
[CrossRef]

Bulovic, V.

P. Peumans, V. Bulović, S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76, 2650–2652 (2000).
[CrossRef]

Callard, S.

B. Masenelli, S. Callard, A. Gagnaire, J. Joseph, “Fabrication and characterization of organic semiconductor-based microcavities,” Thin Solid Films 364, 264–268 (2000).
[CrossRef]

Chau, L. K.

A. Schmidt, L. K. Chau, A. Back, N. Armstrong, “Epitaxial phthalocyanine ultrathin films grown by organic molecular beam epitaxy (OMBE),” in Phthalocyanines: Properties and Applications, C. C. Leznoff, A. B. P. Lever, eds., (VCH, New York, 1996), pp. 307–341.

Chaumont, C.

M. Brinkmann, J. C. Wittmann, C. Chaumont, J. J. Andre, “Effects of solvent on the morphology and crystalline structure of lithium phthalocyanine thin films and powders,” Thin Solid Films 292, 192–203 (1997).
[CrossRef]

Chen, L. B.

Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M. Li, S. Y. Shen, D. H. Huang, “Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (VOPc) films fabricated by vacuum deposition,” Appl. Phys. A 66, 569–573 (1998).
[CrossRef]

Chen, Q.

Q. Chen, D. Gu, F. Gan, “Ellipsometric spectra of cobalt phthalocyanine films,” Physica B 212, 189–194 (1995).
[CrossRef]

Cloots, R.

S. M. Bayliss, S. Heutz, R. Cloots, R. L. Middleton, G. Rumbles, T. S. Jones, “Templating effects in the growth of metal-free phthalocyanine polymorphic double layers,” Adv. Mater. 12, 202–206 (2000).
[CrossRef]

Dann, A. J.

H. Hoshi, A. J. Dann, Y. Maruyama, “The structure and properties of phthalocyanine films grown by the molecular-beam epitaxy technique. II. Ultraviolet/visible spectroscopic study,” J. Appl. Phys. 67, 1845–1849 (1990).
[CrossRef]

Davidson, A. T.

A. T. Davidson, “The effect of the metal atom on the absorption spectra of phthalocyanine films,” J. Chem. Phys. 77, 168–172 (1982).
[CrossRef]

Davoli, I.

J. Godlewski, J. Kalinowski, S. Stizza, I. Davoli, R. Bernardini, “Asymmetries in the optical properties of vacuum-deposited organic films illuminated at the substrate and non-substrate surfaces,” Thin Solid Films 146, 115–132 (1987).
[CrossRef]

Day, P. N.

P. N. Day, Z. Wang, R. Pachter, “Calculation of the structure and absorption spectra of phthalocyanines in the gas-phase and in solution,” Thermochem. Acta 455, 33–50 (1998).

Debe, M. K.

M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. Copper phthalocyanine,” J. Vac. Sci. Technol. A 10, 2816–2821 (1992).
[CrossRef]

M. K. Debe, R. J. Poirier, K. K. Kam, “Organic-thin-film-induced molecular epitaxy from the vapor phase,” Thin Solid Films 197, 335–347 (1991).
[CrossRef]

Djurišic, A. B.

A. B. Djurišić, T. Fritz, K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
[CrossRef]

A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797–48903 (1997).
[CrossRef]

Dodabalapur, A.

Z. Bao, A. J. Lovinger, A. Dodabalapur, “Organic field-effect transistors with high mobility based on copper phthalocyanine,” Appl. Phys. Lett. 69, 3066–3068 (1996).
[CrossRef]

Edwards, L.

L. Edwards, M. Gouterman, “Porphyrins. XV. Vapor absorption spectra and stability: phthalocyanines,” J. Mol. Spectrosc. 33, 292–310 (1970).
[CrossRef]

Elazar, J. M.

A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797–48903 (1997).
[CrossRef]

Fielding, P. E.

P. E. Fielding, A. G. MacKay, “Electrical conduction in the phthalocyanines. I. Optical properties,” Aust. J. Chem. 17, 750–758 (1964).
[CrossRef]

Fischer, W. J.

O. Berger, W. J. Fischer, B. Adolphi, S. Tierbach, V. Melev, J. Schreiber, “Studies on phase transformations of Cu phthalocyanine thin films,” J. Mater. Sci. Mater. Electron. 11, 331–346 (2000).
[CrossRef]

Forrest, S. R.

P. Peumans, V. Bulović, S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76, 2650–2652 (2000).
[CrossRef]

Fritz, T.

X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer,” Appl. Phys. Lett. 78, 410–412 (2001).
[CrossRef]

M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
[CrossRef]

A. B. Djurišić, T. Fritz, K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
[CrossRef]

J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
[CrossRef]

T. Fritz, J. Hahn, H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
[CrossRef]

Fujii, A.

A. Fujii, Y. Ohmori, K. Yoshino, “An organic infrared electroluminescent diode utilizing a phthalocyanine film,” IEEE Trans. Electron Devices 44, 1204–1207 (1997).
[CrossRef]

Gagnaire, A.

B. Masenelli, S. Callard, A. Gagnaire, J. Joseph, “Fabrication and characterization of organic semiconductor-based microcavities,” Thin Solid Films 364, 264–268 (2000).
[CrossRef]

Gan, F.

Q. Chen, D. Gu, F. Gan, “Ellipsometric spectra of cobalt phthalocyanine films,” Physica B 212, 189–194 (1995).
[CrossRef]

Godlewski, J.

J. Godlewski, J. Kalinowski, S. Stizza, I. Davoli, R. Bernardini, “Asymmetries in the optical properties of vacuum-deposited organic films illuminated at the substrate and non-substrate surfaces,” Thin Solid Films 146, 115–132 (1987).
[CrossRef]

Gould, R. D.

S. I. Shihub, R. D. Gould, “Studies of phase transformations in some metal phthalocyanine thin films using measurements of current as a function of temperature,” Thin Solid Films 290-291, 390–394 (1996).
[CrossRef]

Gouterman, M.

L. Edwards, M. Gouterman, “Porphyrins. XV. Vapor absorption spectra and stability: phthalocyanines,” J. Mol. Spectrosc. 33, 292–310 (1970).
[CrossRef]

Gu, D.

Q. Chen, D. Gu, F. Gan, “Ellipsometric spectra of cobalt phthalocyanine films,” Physica B 212, 189–194 (1995).
[CrossRef]

Hahn, J.

T. Fritz, J. Hahn, H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
[CrossRef]

Hanack, M.

B. Resel, M. Ottmar, M. Hanack, J. Keckes, B. Leising, “Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates,” J. Mater. Res. 15, 934–939 (2000).
[CrossRef]

Heiland, G.

H. Laurs, G. Heiland, “Electrical and optical properties of phthalocyanine films,” Thin Solid Films 149, 129–142 (1987).
[CrossRef]

Heutz, S.

S. M. Bayliss, S. Heutz, R. Cloots, R. L. Middleton, G. Rumbles, T. S. Jones, “Templating effects in the growth of metal-free phthalocyanine polymorphic double layers,” Adv. Mater. 12, 202–206 (2000).
[CrossRef]

S. M. Bayliss, S. Heutz, G. Rumbles, T. S. Jones, “Effect of annealing on the properties of thin films of free base phthalocyanine and perylene-3,4,9,10 tetracarboxylic dianhydride deposited by organic molecular beam deposition,” Mater. Res. Soc. Symp. Proc. 560, 71–74 (1999).
[CrossRef]

Hiller, S.

M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
[CrossRef]

Hirai, H.

M. Komiyama, Y. Sakakibara, H. Hirai, “Preparation of highly ordered ultrathin films of copper(II) phthalocyanine on amorphous substrates by molecular beam deposition,” Thin Solid Films 151, L109–L110 (1987).
[CrossRef]

Hoshi, H.

H. Hoshi, A. J. Dann, Y. Maruyama, “The structure and properties of phthalocyanine films grown by the molecular-beam epitaxy technique. II. Ultraviolet/visible spectroscopic study,” J. Appl. Phys. 67, 1845–1849 (1990).
[CrossRef]

Huang, D. H.

Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M. Li, S. Y. Shen, D. H. Huang, “Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (VOPc) films fabricated by vacuum deposition,” Appl. Phys. A 66, 569–573 (1998).
[CrossRef]

Humphreys, M. W.

M. A. Barrett, Z. Borkowska, M. W. Humphreys, R. Parsons, “Ellipsometry of thin films of copper phthalocyanine,” Thin Solid Films 28, 289–302 (1975).
[CrossRef]

Iwatsu, F.

F. Iwatsu, “Size effects on the alpha–beta transformation of phthalocyanine crystals,” J. Phys. Chem. 92, 1678–1681 (1988).
[CrossRef]

F. Iwatsu, T. Kobayashi, N. Uyeda, “Solvent effects on crystal growth and transformation of zinc phthalocyanine,” J. Phys. Chem. 84, 3223–3230 (1980).
[CrossRef]

Jones, T. S.

S. M. Bayliss, S. Heutz, R. Cloots, R. L. Middleton, G. Rumbles, T. S. Jones, “Templating effects in the growth of metal-free phthalocyanine polymorphic double layers,” Adv. Mater. 12, 202–206 (2000).
[CrossRef]

S. M. Bayliss, S. Heutz, G. Rumbles, T. S. Jones, “Effect of annealing on the properties of thin films of free base phthalocyanine and perylene-3,4,9,10 tetracarboxylic dianhydride deposited by organic molecular beam deposition,” Mater. Res. Soc. Symp. Proc. 560, 71–74 (1999).
[CrossRef]

Joseph, J.

B. Masenelli, S. Callard, A. Gagnaire, J. Joseph, “Fabrication and characterization of organic semiconductor-based microcavities,” Thin Solid Films 364, 264–268 (2000).
[CrossRef]

Kalinowski, J.

J. Godlewski, J. Kalinowski, S. Stizza, I. Davoli, R. Bernardini, “Asymmetries in the optical properties of vacuum-deposited organic films illuminated at the substrate and non-substrate surfaces,” Thin Solid Films 146, 115–132 (1987).
[CrossRef]

Kam, K. K.

M. K. Debe, R. J. Poirier, K. K. Kam, “Organic-thin-film-induced molecular epitaxy from the vapor phase,” Thin Solid Films 197, 335–347 (1991).
[CrossRef]

Keckes, J.

B. Resel, M. Ottmar, M. Hanack, J. Keckes, B. Leising, “Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates,” J. Mater. Res. 15, 934–939 (2000).
[CrossRef]

Kobayashi, T.

F. Iwatsu, T. Kobayashi, N. Uyeda, “Solvent effects on crystal growth and transformation of zinc phthalocyanine,” J. Phys. Chem. 84, 3223–3230 (1980).
[CrossRef]

Komiyama, M.

M. Komiyama, Y. Sakakibara, H. Hirai, “Preparation of highly ordered ultrathin films of copper(II) phthalocyanine on amorphous substrates by molecular beam deposition,” Thin Solid Films 151, L109–L110 (1987).
[CrossRef]

Kreienhoop, L.

D. Wöhrle, L. Kreienhoop, D. Schlettwein, “Phthalocyanines and related macrocycles in organic photovoltaic junctions,” in Phthalocyanines: Properties and Applications, C. C. Leznoff, A. B. P. Lever, eds. (VCH, New York, 1996), pp. 219–284.

Lardon, M.

J. H. Sharp, M. Lardon, “Spectroscopic characterization of a new polymorph of metal free phthalocyanine,” J. Phys. Chem. 72, 3230–3235 (1968).
[CrossRef]

Laurs, H.

H. Laurs, G. Heiland, “Electrical and optical properties of phthalocyanine films,” Thin Solid Films 149, 129–142 (1987).
[CrossRef]

Leising, B.

B. Resel, M. Ottmar, M. Hanack, J. Keckes, B. Leising, “Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates,” J. Mater. Res. 15, 934–939 (2000).
[CrossRef]

Leo, K.

X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer,” Appl. Phys. Lett. 78, 410–412 (2001).
[CrossRef]

M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
[CrossRef]

A. B. Djurišić, T. Fritz, K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
[CrossRef]

J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
[CrossRef]

Li, F. M.

Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M. Li, S. Y. Shen, D. H. Huang, “Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (VOPc) films fabricated by vacuum deposition,” Appl. Phys. A 66, 569–573 (1998).
[CrossRef]

Lotz, B.

H. Wachtel, J. C. Wittmann, B. Lotz, M. A. Petit, J. J. Andre, “Anisotropic spin transport in oriented lithium phthalocyanine thin films,” Thin Solid Films 250, 219–231 (1994).
[CrossRef]

Lovinger, A. J.

Z. Bao, A. J. Lovinger, A. Dodabalapur, “Organic field-effect transistors with high mobility based on copper phthalocyanine,” Appl. Phys. Lett. 69, 3066–3068 (1996).
[CrossRef]

Lucia, E. A.

E. A. Lucia, F. D. Verderame, “Spectra of polycrystalline phthalocyanines in the visible region,” J. Chem. Phys. 48, 2674–2681 (1968).
[CrossRef]

Lüth, H.

A. Ritz, H. Lüth, “The electronic structure of GaP (110) and Cu-phthalocyanine overlayers studied by ellipsometry,” Appl. Phys. A 31, 75–80 (1983).
[CrossRef]

MacKay, A. G.

P. E. Fielding, A. G. MacKay, “Electrical conduction in the phthalocyanines. I. Optical properties,” Aust. J. Chem. 17, 750–758 (1964).
[CrossRef]

Märtensson, J.

J. Märtensson, H. Arwin, “Applications of derivative line-shape fitting to ellipsometric spectra of thin films of metal-substituted phthalocyanines,” Thin Solid Films 205, 252–257 (1991).
[CrossRef]

Maruyama, Y.

H. Hoshi, A. J. Dann, Y. Maruyama, “The structure and properties of phthalocyanine films grown by the molecular-beam epitaxy technique. II. Ultraviolet/visible spectroscopic study,” J. Appl. Phys. 67, 1845–1849 (1990).
[CrossRef]

Masenelli, B.

B. Masenelli, S. Callard, A. Gagnaire, J. Joseph, “Fabrication and characterization of organic semiconductor-based microcavities,” Thin Solid Films 364, 264–268 (2000).
[CrossRef]

McHale, G.

M. I. Newton, T. K. H. Starke, M. R. Willis, G. McHale, “NO2 detection at room temperature with copper phthalocyanine thin film devices,” Sens. Actuators B 67, 307–311 (2000).
[CrossRef]

McIntyre, D.

P. S. Vincett, Z. D. Popovic, D. McIntyre, “A novel structural singularity in vacuum-deposited thin films: the mechanism of critical optimization of thin film properties,” Thin Solid Films 82, 357–376 (1981).
[CrossRef]

Melev, V.

O. Berger, W. J. Fischer, B. Adolphi, S. Tierbach, V. Melev, J. Schreiber, “Studies on phase transformations of Cu phthalocyanine thin films,” J. Mater. Sci. Mater. Electron. 11, 331–346 (2000).
[CrossRef]

Middleton, R. L.

S. M. Bayliss, S. Heutz, R. Cloots, R. L. Middleton, G. Rumbles, T. S. Jones, “Templating effects in the growth of metal-free phthalocyanine polymorphic double layers,” Adv. Mater. 12, 202–206 (2000).
[CrossRef]

Murakami, K.

T. Nagasawa, K. Murakami, K. Watanabe, “Improvement in NO2-sensing characteristics of alpha-copper phthalocyanine thin films by the deposition on the hydrofluoric acid-treated glass substrates,” Mol. Cryst. Liq. Cryst. 316, 389–392 (1998).
[CrossRef]

Nagasawa, T.

T. Nagasawa, K. Murakami, K. Watanabe, “Improvement in NO2-sensing characteristics of alpha-copper phthalocyanine thin films by the deposition on the hydrofluoric acid-treated glass substrates,” Mol. Cryst. Liq. Cryst. 316, 389–392 (1998).
[CrossRef]

Newton, M. I.

M. I. Newton, T. K. H. Starke, M. R. Willis, G. McHale, “NO2 detection at room temperature with copper phthalocyanine thin film devices,” Sens. Actuators B 67, 307–311 (2000).
[CrossRef]

Nollau, A.

X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer,” Appl. Phys. Lett. 78, 410–412 (2001).
[CrossRef]

M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
[CrossRef]

Ohmori, Y.

A. Fujii, Y. Ohmori, K. Yoshino, “An organic infrared electroluminescent diode utilizing a phthalocyanine film,” IEEE Trans. Electron Devices 44, 1204–1207 (1997).
[CrossRef]

Ottmar, M.

B. Resel, M. Ottmar, M. Hanack, J. Keckes, B. Leising, “Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates,” J. Mater. Res. 15, 934–939 (2000).
[CrossRef]

Pachter, R.

P. N. Day, Z. Wang, R. Pachter, “Calculation of the structure and absorption spectra of phthalocyanines in the gas-phase and in solution,” Thermochem. Acta 455, 33–50 (1998).

Pan, Y. L.

Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M. Li, S. Y. Shen, D. H. Huang, “Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (VOPc) films fabricated by vacuum deposition,” Appl. Phys. A 66, 569–573 (1998).
[CrossRef]

Parsons, R.

M. A. Barrett, Z. Borkowska, M. W. Humphreys, R. Parsons, “Ellipsometry of thin films of copper phthalocyanine,” Thin Solid Films 28, 289–302 (1975).
[CrossRef]

Petit, M. A.

H. Wachtel, J. C. Wittmann, B. Lotz, M. A. Petit, J. J. Andre, “Anisotropic spin transport in oriented lithium phthalocyanine thin films,” Thin Solid Films 250, 219–231 (1994).
[CrossRef]

Peumans, P.

P. Peumans, V. Bulović, S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76, 2650–2652 (2000).
[CrossRef]

Pfeiffer, M.

X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer,” Appl. Phys. Lett. 78, 410–412 (2001).
[CrossRef]

M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
[CrossRef]

J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
[CrossRef]

Plönings, B.

M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
[CrossRef]

Poirier, R. J.

M. K. Debe, R. J. Poirier, K. K. Kam, “Organic-thin-film-induced molecular epitaxy from the vapor phase,” Thin Solid Films 197, 335–347 (1991).
[CrossRef]

Popovic, Z. D.

P. S. Vincett, Z. D. Popovic, D. McIntyre, “A novel structural singularity in vacuum-deposited thin films: the mechanism of critical optimization of thin film properties,” Thin Solid Films 82, 357–376 (1981).
[CrossRef]

Rakic, A. D.

A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797–48903 (1997).
[CrossRef]

Resel, B.

B. Resel, M. Ottmar, M. Hanack, J. Keckes, B. Leising, “Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates,” J. Mater. Res. 15, 934–939 (2000).
[CrossRef]

Ritz, A.

A. Ritz, H. Lüth, “The electronic structure of GaP (110) and Cu-phthalocyanine overlayers studied by ellipsometry,” Appl. Phys. A 31, 75–80 (1983).
[CrossRef]

Rumbles, G.

S. M. Bayliss, S. Heutz, R. Cloots, R. L. Middleton, G. Rumbles, T. S. Jones, “Templating effects in the growth of metal-free phthalocyanine polymorphic double layers,” Adv. Mater. 12, 202–206 (2000).
[CrossRef]

S. M. Bayliss, S. Heutz, G. Rumbles, T. S. Jones, “Effect of annealing on the properties of thin films of free base phthalocyanine and perylene-3,4,9,10 tetracarboxylic dianhydride deposited by organic molecular beam deposition,” Mater. Res. Soc. Symp. Proc. 560, 71–74 (1999).
[CrossRef]

Sakakibara, Y.

M. Komiyama, Y. Sakakibara, H. Hirai, “Preparation of highly ordered ultrathin films of copper(II) phthalocyanine on amorphous substrates by molecular beam deposition,” Thin Solid Films 151, L109–L110 (1987).
[CrossRef]

Schechtman, B. H.

B. H. Schechtman, W. E. Spicer, “Near infrared to vacuum ultraviolet absorption spectra and the optical constants of phthalocyanine and porphyrin films,” J. Mol. Spectrosc. 33, 28–48 (1970).
[CrossRef]

Schlettvein, D.

M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
[CrossRef]

Schlettwein, D.

D. Wöhrle, L. Kreienhoop, D. Schlettwein, “Phthalocyanines and related macrocycles in organic photovoltaic junctions,” in Phthalocyanines: Properties and Applications, C. C. Leznoff, A. B. P. Lever, eds. (VCH, New York, 1996), pp. 219–284.

Schmidt, A.

A. Schmidt, L. K. Chau, A. Back, N. Armstrong, “Epitaxial phthalocyanine ultrathin films grown by organic molecular beam epitaxy (OMBE),” in Phthalocyanines: Properties and Applications, C. C. Leznoff, A. B. P. Lever, eds., (VCH, New York, 1996), pp. 307–341.

Schreiber, J.

O. Berger, W. J. Fischer, B. Adolphi, S. Tierbach, V. Melev, J. Schreiber, “Studies on phase transformations of Cu phthalocyanine thin films,” J. Mater. Sci. Mater. Electron. 11, 331–346 (2000).
[CrossRef]

Sharp, J. H.

J. H. Sharp, M. Lardon, “Spectroscopic characterization of a new polymorph of metal free phthalocyanine,” J. Phys. Chem. 72, 3230–3235 (1968).
[CrossRef]

Shen, S. Y.

Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M. Li, S. Y. Shen, D. H. Huang, “Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (VOPc) films fabricated by vacuum deposition,” Appl. Phys. A 66, 569–573 (1998).
[CrossRef]

Shen, Y. H.

Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M. Li, S. Y. Shen, D. H. Huang, “Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (VOPc) films fabricated by vacuum deposition,” Appl. Phys. A 66, 569–573 (1998).
[CrossRef]

Shihub, S. I.

S. I. Shihub, R. D. Gould, “Studies of phase transformations in some metal phthalocyanine thin films using measurements of current as a function of temperature,” Thin Solid Films 290-291, 390–394 (1996).
[CrossRef]

Spicer, W. E.

B. H. Schechtman, W. E. Spicer, “Near infrared to vacuum ultraviolet absorption spectra and the optical constants of phthalocyanine and porphyrin films,” J. Mol. Spectrosc. 33, 28–48 (1970).
[CrossRef]

Starke, T. K. H.

M. I. Newton, T. K. H. Starke, M. R. Willis, G. McHale, “NO2 detection at room temperature with copper phthalocyanine thin film devices,” Sens. Actuators B 67, 307–311 (2000).
[CrossRef]

Stizza, S.

J. Godlewski, J. Kalinowski, S. Stizza, I. Davoli, R. Bernardini, “Asymmetries in the optical properties of vacuum-deposited organic films illuminated at the substrate and non-substrate surfaces,” Thin Solid Films 146, 115–132 (1987).
[CrossRef]

Suito, E.

N. Uyeda, M. Ashida, E. Suito, “Orientation overgrowth of condensed polycyclic aromatic compounds vacuum-evaporated on cleaved face of mica,” J. Appl. Phys. 36, 1453–1460 (1965).
[CrossRef]

Tierbach, S.

O. Berger, W. J. Fischer, B. Adolphi, S. Tierbach, V. Melev, J. Schreiber, “Studies on phase transformations of Cu phthalocyanine thin films,” J. Mater. Sci. Mater. Electron. 11, 331–346 (2000).
[CrossRef]

Uyeda, N.

F. Iwatsu, T. Kobayashi, N. Uyeda, “Solvent effects on crystal growth and transformation of zinc phthalocyanine,” J. Phys. Chem. 84, 3223–3230 (1980).
[CrossRef]

N. Uyeda, M. Ashida, E. Suito, “Orientation overgrowth of condensed polycyclic aromatic compounds vacuum-evaporated on cleaved face of mica,” J. Appl. Phys. 36, 1453–1460 (1965).
[CrossRef]

Verderame, F. D.

E. A. Lucia, F. D. Verderame, “Spectra of polycrystalline phthalocyanines in the visible region,” J. Chem. Phys. 48, 2674–2681 (1968).
[CrossRef]

Vincett, P. S.

P. S. Vincett, Z. D. Popovic, D. McIntyre, “A novel structural singularity in vacuum-deposited thin films: the mechanism of critical optimization of thin film properties,” Thin Solid Films 82, 357–376 (1981).
[CrossRef]

Wachtel, H.

H. Wachtel, J. C. Wittmann, B. Lotz, M. A. Petit, J. J. Andre, “Anisotropic spin transport in oriented lithium phthalocyanine thin films,” Thin Solid Films 250, 219–231 (1994).
[CrossRef]

Wang, Z.

P. N. Day, Z. Wang, R. Pachter, “Calculation of the structure and absorption spectra of phthalocyanines in the gas-phase and in solution,” Thermochem. Acta 455, 33–50 (1998).

Watanabe, K.

T. Nagasawa, K. Murakami, K. Watanabe, “Improvement in NO2-sensing characteristics of alpha-copper phthalocyanine thin films by the deposition on the hydrofluoric acid-treated glass substrates,” Mol. Cryst. Liq. Cryst. 316, 389–392 (1998).
[CrossRef]

Werner, A.

X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer,” Appl. Phys. Lett. 78, 410–412 (2001).
[CrossRef]

Willis, M. R.

M. I. Newton, T. K. H. Starke, M. R. Willis, G. McHale, “NO2 detection at room temperature with copper phthalocyanine thin film devices,” Sens. Actuators B 67, 307–311 (2000).
[CrossRef]

Wittmann, J. C.

M. Brinkmann, J. C. Wittmann, C. Chaumont, J. J. Andre, “Effects of solvent on the morphology and crystalline structure of lithium phthalocyanine thin films and powders,” Thin Solid Films 292, 192–203 (1997).
[CrossRef]

H. Wachtel, J. C. Wittmann, B. Lotz, M. A. Petit, J. J. Andre, “Anisotropic spin transport in oriented lithium phthalocyanine thin films,” Thin Solid Films 250, 219–231 (1994).
[CrossRef]

Wöhrle, D.

M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
[CrossRef]

D. Wöhrle, L. Kreienhoop, D. Schlettwein, “Phthalocyanines and related macrocycles in organic photovoltaic junctions,” in Phthalocyanines: Properties and Applications, C. C. Leznoff, A. B. P. Lever, eds. (VCH, New York, 1996), pp. 219–284.

Wu, Y. J.

Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M. Li, S. Y. Shen, D. H. Huang, “Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (VOPc) films fabricated by vacuum deposition,” Appl. Phys. A 66, 569–573 (1998).
[CrossRef]

Yoshino, K.

A. Fujii, Y. Ohmori, K. Yoshino, “An organic infrared electroluminescent diode utilizing a phthalocyanine film,” IEEE Trans. Electron Devices 44, 1204–1207 (1997).
[CrossRef]

Zhao, Y. Y.

Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M. Li, S. Y. Shen, D. H. Huang, “Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (VOPc) films fabricated by vacuum deposition,” Appl. Phys. A 66, 569–573 (1998).
[CrossRef]

Zhou, X.

X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer,” Appl. Phys. Lett. 78, 410–412 (2001).
[CrossRef]

Adv. Mater. (1)

S. M. Bayliss, S. Heutz, R. Cloots, R. L. Middleton, G. Rumbles, T. S. Jones, “Templating effects in the growth of metal-free phthalocyanine polymorphic double layers,” Adv. Mater. 12, 202–206 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (2)

A. Ritz, H. Lüth, “The electronic structure of GaP (110) and Cu-phthalocyanine overlayers studied by ellipsometry,” Appl. Phys. A 31, 75–80 (1983).
[CrossRef]

Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M. Li, S. Y. Shen, D. H. Huang, “Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (VOPc) films fabricated by vacuum deposition,” Appl. Phys. A 66, 569–573 (1998).
[CrossRef]

Appl. Phys. Lett. (4)

Z. Bao, A. J. Lovinger, A. Dodabalapur, “Organic field-effect transistors with high mobility based on copper phthalocyanine,” Appl. Phys. Lett. 69, 3066–3068 (1996).
[CrossRef]

J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
[CrossRef]

X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer,” Appl. Phys. Lett. 78, 410–412 (2001).
[CrossRef]

P. Peumans, V. Bulović, S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76, 2650–2652 (2000).
[CrossRef]

Aust. J. Chem. (1)

P. E. Fielding, A. G. MacKay, “Electrical conduction in the phthalocyanines. I. Optical properties,” Aust. J. Chem. 17, 750–758 (1964).
[CrossRef]

IEEE Trans. Electron Devices (1)

A. Fujii, Y. Ohmori, K. Yoshino, “An organic infrared electroluminescent diode utilizing a phthalocyanine film,” IEEE Trans. Electron Devices 44, 1204–1207 (1997).
[CrossRef]

J. Appl. Phys. (2)

H. Hoshi, A. J. Dann, Y. Maruyama, “The structure and properties of phthalocyanine films grown by the molecular-beam epitaxy technique. II. Ultraviolet/visible spectroscopic study,” J. Appl. Phys. 67, 1845–1849 (1990).
[CrossRef]

N. Uyeda, M. Ashida, E. Suito, “Orientation overgrowth of condensed polycyclic aromatic compounds vacuum-evaporated on cleaved face of mica,” J. Appl. Phys. 36, 1453–1460 (1965).
[CrossRef]

J. Chem. Phys. (2)

A. T. Davidson, “The effect of the metal atom on the absorption spectra of phthalocyanine films,” J. Chem. Phys. 77, 168–172 (1982).
[CrossRef]

E. A. Lucia, F. D. Verderame, “Spectra of polycrystalline phthalocyanines in the visible region,” J. Chem. Phys. 48, 2674–2681 (1968).
[CrossRef]

J. Mater. Res. (1)

B. Resel, M. Ottmar, M. Hanack, J. Keckes, B. Leising, “Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates,” J. Mater. Res. 15, 934–939 (2000).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

O. Berger, W. J. Fischer, B. Adolphi, S. Tierbach, V. Melev, J. Schreiber, “Studies on phase transformations of Cu phthalocyanine thin films,” J. Mater. Sci. Mater. Electron. 11, 331–346 (2000).
[CrossRef]

J. Mol. Spectrosc. (2)

L. Edwards, M. Gouterman, “Porphyrins. XV. Vapor absorption spectra and stability: phthalocyanines,” J. Mol. Spectrosc. 33, 292–310 (1970).
[CrossRef]

B. H. Schechtman, W. E. Spicer, “Near infrared to vacuum ultraviolet absorption spectra and the optical constants of phthalocyanine and porphyrin films,” J. Mol. Spectrosc. 33, 28–48 (1970).
[CrossRef]

J. Opt. A (1)

A. B. Djurišić, T. Fritz, K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
[CrossRef]

J. Phys. Chem. (3)

J. H. Sharp, M. Lardon, “Spectroscopic characterization of a new polymorph of metal free phthalocyanine,” J. Phys. Chem. 72, 3230–3235 (1968).
[CrossRef]

F. Iwatsu, T. Kobayashi, N. Uyeda, “Solvent effects on crystal growth and transformation of zinc phthalocyanine,” J. Phys. Chem. 84, 3223–3230 (1980).
[CrossRef]

F. Iwatsu, “Size effects on the alpha–beta transformation of phthalocyanine crystals,” J. Phys. Chem. 92, 1678–1681 (1988).
[CrossRef]

J. Vac. Sci. Technol. A (1)

M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. Copper phthalocyanine,” J. Vac. Sci. Technol. A 10, 2816–2821 (1992).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

S. M. Bayliss, S. Heutz, G. Rumbles, T. S. Jones, “Effect of annealing on the properties of thin films of free base phthalocyanine and perylene-3,4,9,10 tetracarboxylic dianhydride deposited by organic molecular beam deposition,” Mater. Res. Soc. Symp. Proc. 560, 71–74 (1999).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

T. Nagasawa, K. Murakami, K. Watanabe, “Improvement in NO2-sensing characteristics of alpha-copper phthalocyanine thin films by the deposition on the hydrofluoric acid-treated glass substrates,” Mol. Cryst. Liq. Cryst. 316, 389–392 (1998).
[CrossRef]

Phys. Rev. E (1)

A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797–48903 (1997).
[CrossRef]

Physica B (1)

Q. Chen, D. Gu, F. Gan, “Ellipsometric spectra of cobalt phthalocyanine films,” Physica B 212, 189–194 (1995).
[CrossRef]

Sens. Actuators B (1)

M. I. Newton, T. K. H. Starke, M. R. Willis, G. McHale, “NO2 detection at room temperature with copper phthalocyanine thin film devices,” Sens. Actuators B 67, 307–311 (2000).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
[CrossRef]

Thermochem. Acta (1)

P. N. Day, Z. Wang, R. Pachter, “Calculation of the structure and absorption spectra of phthalocyanines in the gas-phase and in solution,” Thermochem. Acta 455, 33–50 (1998).

Thin Solid Films (12)

J. Godlewski, J. Kalinowski, S. Stizza, I. Davoli, R. Bernardini, “Asymmetries in the optical properties of vacuum-deposited organic films illuminated at the substrate and non-substrate surfaces,” Thin Solid Films 146, 115–132 (1987).
[CrossRef]

T. Fritz, J. Hahn, H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
[CrossRef]

H. Laurs, G. Heiland, “Electrical and optical properties of phthalocyanine films,” Thin Solid Films 149, 129–142 (1987).
[CrossRef]

J. Märtensson, H. Arwin, “Applications of derivative line-shape fitting to ellipsometric spectra of thin films of metal-substituted phthalocyanines,” Thin Solid Films 205, 252–257 (1991).
[CrossRef]

B. Masenelli, S. Callard, A. Gagnaire, J. Joseph, “Fabrication and characterization of organic semiconductor-based microcavities,” Thin Solid Films 364, 264–268 (2000).
[CrossRef]

M. K. Debe, R. J. Poirier, K. K. Kam, “Organic-thin-film-induced molecular epitaxy from the vapor phase,” Thin Solid Films 197, 335–347 (1991).
[CrossRef]

M. Komiyama, Y. Sakakibara, H. Hirai, “Preparation of highly ordered ultrathin films of copper(II) phthalocyanine on amorphous substrates by molecular beam deposition,” Thin Solid Films 151, L109–L110 (1987).
[CrossRef]

P. S. Vincett, Z. D. Popovic, D. McIntyre, “A novel structural singularity in vacuum-deposited thin films: the mechanism of critical optimization of thin film properties,” Thin Solid Films 82, 357–376 (1981).
[CrossRef]

M. A. Barrett, Z. Borkowska, M. W. Humphreys, R. Parsons, “Ellipsometry of thin films of copper phthalocyanine,” Thin Solid Films 28, 289–302 (1975).
[CrossRef]

S. I. Shihub, R. D. Gould, “Studies of phase transformations in some metal phthalocyanine thin films using measurements of current as a function of temperature,” Thin Solid Films 290-291, 390–394 (1996).
[CrossRef]

H. Wachtel, J. C. Wittmann, B. Lotz, M. A. Petit, J. J. Andre, “Anisotropic spin transport in oriented lithium phthalocyanine thin films,” Thin Solid Films 250, 219–231 (1994).
[CrossRef]

M. Brinkmann, J. C. Wittmann, C. Chaumont, J. J. Andre, “Effects of solvent on the morphology and crystalline structure of lithium phthalocyanine thin films and powders,” Thin Solid Films 292, 192–203 (1997).
[CrossRef]

Other (2)

A. Schmidt, L. K. Chau, A. Back, N. Armstrong, “Epitaxial phthalocyanine ultrathin films grown by organic molecular beam epitaxy (OMBE),” in Phthalocyanines: Properties and Applications, C. C. Leznoff, A. B. P. Lever, eds., (VCH, New York, 1996), pp. 307–341.

D. Wöhrle, L. Kreienhoop, D. Schlettwein, “Phthalocyanines and related macrocycles in organic photovoltaic junctions,” in Phthalocyanines: Properties and Applications, C. C. Leznoff, A. B. P. Lever, eds. (VCH, New York, 1996), pp. 219–284.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Tan(ψ) and cos(Δ) for CoPc films on glass and silicon substrates. The fit is a point-to-point fit; (a) glass substrate, (b) silicon substrate.

Fig. 2
Fig. 2

Tan(ψ) and cos(Δ) for FePc films on glass and silicon substrates. The fit is a point-to-point fit.

Fig. 3
Fig. 3

Tan(ψ) and cos(Δ) for NiPc films on glass and silicon substrates. The fit is a point-to-point fit: (a) glass substrate, (b) silicon substrate.

Fig. 4
Fig. 4

Absorption spectra of CoPc, FePc, and NiPc.

Fig. 5
Fig. 5

Real (n) and imaginary (k) parts of the index of refraction of CoPc, FePc, and NiPc.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Fi=ΦtanΨglass+ΦtanΨSi+ΦcosΔglass+ΦcosΔSii+γi,i-1,
ΦX=Xexp-Xcalc2,

Metrics