Abstract

A method for fabricating microlenses in polycarbonate material is reported. Using a direct-write technique based on scanning excimer laser ablation with a circular beam, we can etch an arbitrary shape in the polymer material. The beam is obtained by imaging a circular aperture onto the polymer surface, and scanning is realized by the translation stage carrying the sample, which makes successive contours with well-chosen diameters and scan velocities. Afterward, to smooth the ablated surface and release it from debris, a large beam aperture covering the full lens area is used to ablate the lens deeper into the substrate. The fabrication process and the characterization method are described, including calculation of the contour set for a desired lens shape. The optical performance is evaluated by Mach–Zehnder interferometry, showing that aberrations below λ/10 are possible for slow lenses.

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
    [CrossRef]
  2. W. Cox, C. Guan, D. Hayes, “Microjet printing of micro-optical interconnects and sensors,” in Optoelectronic Interconnects VII; Photonics Packaging and Integration II, M. Feldman, R. Li, W. Matkin, S. Tang, eds., Proc. SPIE3952, 400–407 (2000).
  3. X. Wang, J. R. Leger, R. H. Rediker, “Rapid fabrication of diffractive optical elements by use of image-based excimer laser ablation,” Appl. Opt. 36, 4660–4665 (1997).
    [CrossRef] [PubMed]
  4. R. Matz, H. Weber, G. Weimann, “Laser-induced dry etching of integrated InP microlenses,” Appl. Phys. A 65, 349–353 (1997).
    [CrossRef]
  5. S. Mihailov, S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon,” Appl. Opt. 32, 6211–6218 (1993).
    [CrossRef] [PubMed]
  6. S. Lazare, J. Lopez, J.-M. Turlet, M. Kufner, S. Kufner, P. Chavel, “Microlenses fabricated by ultraviolet excimer laser irradiation of poly(methyl methacrylate) followed by styrene diffusion,” Appl. Opt. 35, 4471–4475 (1996).
    [CrossRef] [PubMed]
  7. F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, “Microlens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A 68, 709–713 (1999).
    [CrossRef]
  8. T. Jitsuno, K. Tokumura, N. Nakashima, M. Nakatsuka, “Laser ablative shaping of plastic optical components for phase control,” Appl. Opt. 38, 3338–3342 (1999).
    [CrossRef]
  9. M. Wakaki, Y. Komachi, G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37, 627–631 (1998).
    [CrossRef]
  10. K. Naessens, P. Van Daele, R. Baets, “Laser-ablation-based technique for flexible fabrication of microlenses in polymer materials,” in Second International Symposium on Laser Precision Microfabrication, I. Miyamoto, Y. Feng Lu, K. Sugioka, J. Dubowski, eds., Proc. SPIE4426, 124–127 (2001).
  11. K. Naessens, P. Van Daele, R. Baets, “Excimer laser ablation based microlens fabrication for optical fiber coupling purposes,” in Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, eds., Proc. SPIE4941, 133–139 (2002).
  12. T. Berden, E. Kreutz, R. Poprawe, “Debris-reduced laser machining of polymeric waveguides for optoelectronic applications,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. Gower, H. Helvajian, K. Sugioka, J. Dubowski, eds., Proc. SPIE4274, 432–441 (2001).
  13. R. Srinivasan, B. Braren, K. Casey, “Nature of incubation pulses in the ultraviolet laser ablation of polymethyl methacrylate,” J. Appl. Phys. 68, 1842–1847 (1990).
    [CrossRef]
  14. B. Hopp, M. Csete, K. Revesz, J. Vinko, Z. Bor, “Formation of the surface structure of polyethylene-therephtalate (PET) due to ArF excimer laser ablation,” Appl. Surf. Sci. 96-8, 611–616 (1996).
    [CrossRef]
  15. F. Burns, S. Cain, “The effect of pulse repetition rate on laser ablation of polyimide and poly(methyl methacrylate) based polymers,” J. Appl. Phys. 29, 1349–1355 (1996).

1999 (2)

F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, “Microlens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A 68, 709–713 (1999).
[CrossRef]

T. Jitsuno, K. Tokumura, N. Nakashima, M. Nakatsuka, “Laser ablative shaping of plastic optical components for phase control,” Appl. Opt. 38, 3338–3342 (1999).
[CrossRef]

1998 (1)

1997 (2)

1996 (3)

B. Hopp, M. Csete, K. Revesz, J. Vinko, Z. Bor, “Formation of the surface structure of polyethylene-therephtalate (PET) due to ArF excimer laser ablation,” Appl. Surf. Sci. 96-8, 611–616 (1996).
[CrossRef]

F. Burns, S. Cain, “The effect of pulse repetition rate on laser ablation of polyimide and poly(methyl methacrylate) based polymers,” J. Appl. Phys. 29, 1349–1355 (1996).

S. Lazare, J. Lopez, J.-M. Turlet, M. Kufner, S. Kufner, P. Chavel, “Microlenses fabricated by ultraviolet excimer laser irradiation of poly(methyl methacrylate) followed by styrene diffusion,” Appl. Opt. 35, 4471–4475 (1996).
[CrossRef] [PubMed]

1994 (1)

M. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

1993 (1)

1990 (1)

R. Srinivasan, B. Braren, K. Casey, “Nature of incubation pulses in the ultraviolet laser ablation of polymethyl methacrylate,” J. Appl. Phys. 68, 1842–1847 (1990).
[CrossRef]

Baets, R.

K. Naessens, P. Van Daele, R. Baets, “Excimer laser ablation based microlens fabrication for optical fiber coupling purposes,” in Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, eds., Proc. SPIE4941, 133–139 (2002).

K. Naessens, P. Van Daele, R. Baets, “Laser-ablation-based technique for flexible fabrication of microlenses in polymer materials,” in Second International Symposium on Laser Precision Microfabrication, I. Miyamoto, Y. Feng Lu, K. Sugioka, J. Dubowski, eds., Proc. SPIE4426, 124–127 (2001).

Beinhorn, F.

F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, “Microlens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A 68, 709–713 (1999).
[CrossRef]

Berden, T.

T. Berden, E. Kreutz, R. Poprawe, “Debris-reduced laser machining of polymeric waveguides for optoelectronic applications,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. Gower, H. Helvajian, K. Sugioka, J. Dubowski, eds., Proc. SPIE4274, 432–441 (2001).

Bor, Z.

B. Hopp, M. Csete, K. Revesz, J. Vinko, Z. Bor, “Formation of the surface structure of polyethylene-therephtalate (PET) due to ArF excimer laser ablation,” Appl. Surf. Sci. 96-8, 611–616 (1996).
[CrossRef]

Braren, B.

R. Srinivasan, B. Braren, K. Casey, “Nature of incubation pulses in the ultraviolet laser ablation of polymethyl methacrylate,” J. Appl. Phys. 68, 1842–1847 (1990).
[CrossRef]

Burns, F.

F. Burns, S. Cain, “The effect of pulse repetition rate on laser ablation of polyimide and poly(methyl methacrylate) based polymers,” J. Appl. Phys. 29, 1349–1355 (1996).

Cain, S.

F. Burns, S. Cain, “The effect of pulse repetition rate on laser ablation of polyimide and poly(methyl methacrylate) based polymers,” J. Appl. Phys. 29, 1349–1355 (1996).

Casey, K.

R. Srinivasan, B. Braren, K. Casey, “Nature of incubation pulses in the ultraviolet laser ablation of polymethyl methacrylate,” J. Appl. Phys. 68, 1842–1847 (1990).
[CrossRef]

Chavel, P.

Cox, W.

W. Cox, C. Guan, D. Hayes, “Microjet printing of micro-optical interconnects and sensors,” in Optoelectronic Interconnects VII; Photonics Packaging and Integration II, M. Feldman, R. Li, W. Matkin, S. Tang, eds., Proc. SPIE3952, 400–407 (2000).

Csete, M.

B. Hopp, M. Csete, K. Revesz, J. Vinko, Z. Bor, “Formation of the surface structure of polyethylene-therephtalate (PET) due to ArF excimer laser ablation,” Appl. Surf. Sci. 96-8, 611–616 (1996).
[CrossRef]

Gale, M.

M. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Guan, C.

W. Cox, C. Guan, D. Hayes, “Microjet printing of micro-optical interconnects and sensors,” in Optoelectronic Interconnects VII; Photonics Packaging and Integration II, M. Feldman, R. Li, W. Matkin, S. Tang, eds., Proc. SPIE3952, 400–407 (2000).

Hayes, D.

W. Cox, C. Guan, D. Hayes, “Microjet printing of micro-optical interconnects and sensors,” in Optoelectronic Interconnects VII; Photonics Packaging and Integration II, M. Feldman, R. Li, W. Matkin, S. Tang, eds., Proc. SPIE3952, 400–407 (2000).

Hopp, B.

B. Hopp, M. Csete, K. Revesz, J. Vinko, Z. Bor, “Formation of the surface structure of polyethylene-therephtalate (PET) due to ArF excimer laser ablation,” Appl. Surf. Sci. 96-8, 611–616 (1996).
[CrossRef]

Ihlemann, J.

F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, “Microlens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A 68, 709–713 (1999).
[CrossRef]

Jitsuno, T.

Kanai, G.

Komachi, Y.

Kreutz, E.

T. Berden, E. Kreutz, R. Poprawe, “Debris-reduced laser machining of polymeric waveguides for optoelectronic applications,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. Gower, H. Helvajian, K. Sugioka, J. Dubowski, eds., Proc. SPIE4274, 432–441 (2001).

Kufner, M.

Kufner, S.

Lazare, S.

Leger, J. R.

Lopez, J.

Luther, K.

F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, “Microlens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A 68, 709–713 (1999).
[CrossRef]

Matz, R.

R. Matz, H. Weber, G. Weimann, “Laser-induced dry etching of integrated InP microlenses,” Appl. Phys. A 65, 349–353 (1997).
[CrossRef]

Mihailov, S.

Naessens, K.

K. Naessens, P. Van Daele, R. Baets, “Laser-ablation-based technique for flexible fabrication of microlenses in polymer materials,” in Second International Symposium on Laser Precision Microfabrication, I. Miyamoto, Y. Feng Lu, K. Sugioka, J. Dubowski, eds., Proc. SPIE4426, 124–127 (2001).

K. Naessens, P. Van Daele, R. Baets, “Excimer laser ablation based microlens fabrication for optical fiber coupling purposes,” in Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, eds., Proc. SPIE4941, 133–139 (2002).

Nakashima, N.

Nakatsuka, M.

Pedersen, J.

M. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Poprawe, R.

T. Berden, E. Kreutz, R. Poprawe, “Debris-reduced laser machining of polymeric waveguides for optoelectronic applications,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. Gower, H. Helvajian, K. Sugioka, J. Dubowski, eds., Proc. SPIE4274, 432–441 (2001).

Rediker, R. H.

Revesz, K.

B. Hopp, M. Csete, K. Revesz, J. Vinko, Z. Bor, “Formation of the surface structure of polyethylene-therephtalate (PET) due to ArF excimer laser ablation,” Appl. Surf. Sci. 96-8, 611–616 (1996).
[CrossRef]

Rossi, M.

M. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Schütz, H.

M. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Srinivasan, R.

R. Srinivasan, B. Braren, K. Casey, “Nature of incubation pulses in the ultraviolet laser ablation of polymethyl methacrylate,” J. Appl. Phys. 68, 1842–1847 (1990).
[CrossRef]

Tokumura, K.

Troe, J.

F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, “Microlens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A 68, 709–713 (1999).
[CrossRef]

Turlet, J.-M.

Van Daele, P.

K. Naessens, P. Van Daele, R. Baets, “Laser-ablation-based technique for flexible fabrication of microlenses in polymer materials,” in Second International Symposium on Laser Precision Microfabrication, I. Miyamoto, Y. Feng Lu, K. Sugioka, J. Dubowski, eds., Proc. SPIE4426, 124–127 (2001).

K. Naessens, P. Van Daele, R. Baets, “Excimer laser ablation based microlens fabrication for optical fiber coupling purposes,” in Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, eds., Proc. SPIE4941, 133–139 (2002).

Vinko, J.

B. Hopp, M. Csete, K. Revesz, J. Vinko, Z. Bor, “Formation of the surface structure of polyethylene-therephtalate (PET) due to ArF excimer laser ablation,” Appl. Surf. Sci. 96-8, 611–616 (1996).
[CrossRef]

Wakaki, M.

Wang, X.

Weber, H.

R. Matz, H. Weber, G. Weimann, “Laser-induced dry etching of integrated InP microlenses,” Appl. Phys. A 65, 349–353 (1997).
[CrossRef]

Weimann, G.

R. Matz, H. Weber, G. Weimann, “Laser-induced dry etching of integrated InP microlenses,” Appl. Phys. A 65, 349–353 (1997).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. A (2)

F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, “Microlens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A 68, 709–713 (1999).
[CrossRef]

R. Matz, H. Weber, G. Weimann, “Laser-induced dry etching of integrated InP microlenses,” Appl. Phys. A 65, 349–353 (1997).
[CrossRef]

Appl. Surf. Sci. (1)

B. Hopp, M. Csete, K. Revesz, J. Vinko, Z. Bor, “Formation of the surface structure of polyethylene-therephtalate (PET) due to ArF excimer laser ablation,” Appl. Surf. Sci. 96-8, 611–616 (1996).
[CrossRef]

J. Appl. Phys. (2)

F. Burns, S. Cain, “The effect of pulse repetition rate on laser ablation of polyimide and poly(methyl methacrylate) based polymers,” J. Appl. Phys. 29, 1349–1355 (1996).

R. Srinivasan, B. Braren, K. Casey, “Nature of incubation pulses in the ultraviolet laser ablation of polymethyl methacrylate,” J. Appl. Phys. 68, 1842–1847 (1990).
[CrossRef]

Opt. Eng. (1)

M. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Other (4)

W. Cox, C. Guan, D. Hayes, “Microjet printing of micro-optical interconnects and sensors,” in Optoelectronic Interconnects VII; Photonics Packaging and Integration II, M. Feldman, R. Li, W. Matkin, S. Tang, eds., Proc. SPIE3952, 400–407 (2000).

K. Naessens, P. Van Daele, R. Baets, “Laser-ablation-based technique for flexible fabrication of microlenses in polymer materials,” in Second International Symposium on Laser Precision Microfabrication, I. Miyamoto, Y. Feng Lu, K. Sugioka, J. Dubowski, eds., Proc. SPIE4426, 124–127 (2001).

K. Naessens, P. Van Daele, R. Baets, “Excimer laser ablation based microlens fabrication for optical fiber coupling purposes,” in Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, eds., Proc. SPIE4941, 133–139 (2002).

T. Berden, E. Kreutz, R. Poprawe, “Debris-reduced laser machining of polymeric waveguides for optoelectronic applications,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, M. Gower, H. Helvajian, K. Sugioka, J. Dubowski, eds., Proc. SPIE4274, 432–441 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics