Abstract

We have measured the optical properties of wire-grid polarizers (WGPs). The implications of these results to the application of WGPs in projectors that use reflective light valves are discussed. In particular, the brightness and the contrast ratio of the projection system are investigated as functions of the angle of incidence of the light beam onto the WGP. It was found that the optimal incident angle is dependent on the physical design of the wire grids. In the sample that we describe, the optimal incident angle was 35° instead of 45°. At the optimal incident angle, both the transmission and the reflection extinction ratios can be quite good. However, WGPs suffer from the drawback of free-carrier absorption by the metal grid.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Pezzaniti, R. A. Chipman, “Angular dependence of polarizing beam-splitter cubes,” Appl. Opt. 33, 1916–1929 (1994).
    [CrossRef]
  2. R. A. Soref, D. H. McMahon, “Total switching of unpolarized fiber light with a four-port electro-optic liquid crystal device,” Opt. Lett. 5, 378–380 (1980).
    [CrossRef]
  3. L. Li, J. A. Dubrowolski, R. T. Sullivan, Z. Pang, “Novel thin film polarizing beam splitter and its application in high efficiency projection displays,” in Projection Displays V, M. H. Wu, ed., Proc. SPIE3634, 52–62 (1999).
    [CrossRef]
  4. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
    [CrossRef] [PubMed]
  5. J. Turunen, “Form-birefringence limits of Fourier-expansion method in grating theory,” J. Opt. Soc. Am. A 13, 1013–1018 (1996).
    [CrossRef]
  6. J. Turunen, “Form-birefringence limits of Fourier-expansion method in grating theory: arbitrary angle of incidence,” J. Opt. Soc. Am. A 14, 2314–2316 (1997).
    [CrossRef]
  7. L. Pajewski, R. Borghi, G. Schettini, F. Frezza, M. Santarsiero, “Design of a binary grating with subwavelength features that acts as a polarizing beam splitter,” Appl. Opt. 40, 5898–5905 (2001).
    [CrossRef]
  8. E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, New York, 1998), pp. 327–328.
  9. I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997), pp. 153–167.
  10. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), pp. 837–839.
  11. T. Sergan, J. Kelly, M. Lavrentovich, E. Gardner, D. Hansen, R. Perkins, J. Hansen, R. Critchfield, “Twisted nematic reflective display with internal wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.
  12. D. Hansen, E. Gardner, R. Perkins, M. Lines, A. Robbins, “The display applications and physics of the ProFlux wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.
  13. X. J. Yu, H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407–4412 (2003).
    [CrossRef]

2003

X. J. Yu, H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407–4412 (2003).
[CrossRef]

2001

2000

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[CrossRef] [PubMed]

1997

1996

1994

1980

R. A. Soref, D. H. McMahon, “Total switching of unpolarized fiber light with a four-port electro-optic liquid crystal device,” Opt. Lett. 5, 378–380 (1980).
[CrossRef]

Borghi, R.

Born, M.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), pp. 837–839.

Chipman, R. A.

Critchfield, R.

T. Sergan, J. Kelly, M. Lavrentovich, E. Gardner, D. Hansen, R. Perkins, J. Hansen, R. Critchfield, “Twisted nematic reflective display with internal wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

Dubrowolski, J. A.

L. Li, J. A. Dubrowolski, R. T. Sullivan, Z. Pang, “Novel thin film polarizing beam splitter and its application in high efficiency projection displays,” in Projection Displays V, M. H. Wu, ed., Proc. SPIE3634, 52–62 (1999).
[CrossRef]

Frezza, F.

Gardner, E.

T. Sergan, J. Kelly, M. Lavrentovich, E. Gardner, D. Hansen, R. Perkins, J. Hansen, R. Critchfield, “Twisted nematic reflective display with internal wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

D. Hansen, E. Gardner, R. Perkins, M. Lines, A. Robbins, “The display applications and physics of the ProFlux wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

Gilbert, L. R.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[CrossRef] [PubMed]

Hansen, D.

D. Hansen, E. Gardner, R. Perkins, M. Lines, A. Robbins, “The display applications and physics of the ProFlux wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

T. Sergan, J. Kelly, M. Lavrentovich, E. Gardner, D. Hansen, R. Perkins, J. Hansen, R. Critchfield, “Twisted nematic reflective display with internal wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

Hansen, J.

T. Sergan, J. Kelly, M. Lavrentovich, E. Gardner, D. Hansen, R. Perkins, J. Hansen, R. Critchfield, “Twisted nematic reflective display with internal wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

Hecht, E.

E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, New York, 1998), pp. 327–328.

Hodgkinson, I. J.

I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997), pp. 153–167.

Kelly, J.

T. Sergan, J. Kelly, M. Lavrentovich, E. Gardner, D. Hansen, R. Perkins, J. Hansen, R. Critchfield, “Twisted nematic reflective display with internal wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

Kwok, H. S.

X. J. Yu, H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407–4412 (2003).
[CrossRef]

Lavrentovich, M.

T. Sergan, J. Kelly, M. Lavrentovich, E. Gardner, D. Hansen, R. Perkins, J. Hansen, R. Critchfield, “Twisted nematic reflective display with internal wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

Li, L.

L. Li, J. A. Dubrowolski, R. T. Sullivan, Z. Pang, “Novel thin film polarizing beam splitter and its application in high efficiency projection displays,” in Projection Displays V, M. H. Wu, ed., Proc. SPIE3634, 52–62 (1999).
[CrossRef]

Lines, M.

D. Hansen, E. Gardner, R. Perkins, M. Lines, A. Robbins, “The display applications and physics of the ProFlux wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

McMahon, D. H.

R. A. Soref, D. H. McMahon, “Total switching of unpolarized fiber light with a four-port electro-optic liquid crystal device,” Opt. Lett. 5, 378–380 (1980).
[CrossRef]

Nevitt, T. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[CrossRef] [PubMed]

Ouderkirk, A. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[CrossRef] [PubMed]

Pajewski, L.

Pang, Z.

L. Li, J. A. Dubrowolski, R. T. Sullivan, Z. Pang, “Novel thin film polarizing beam splitter and its application in high efficiency projection displays,” in Projection Displays V, M. H. Wu, ed., Proc. SPIE3634, 52–62 (1999).
[CrossRef]

Perkins, R.

T. Sergan, J. Kelly, M. Lavrentovich, E. Gardner, D. Hansen, R. Perkins, J. Hansen, R. Critchfield, “Twisted nematic reflective display with internal wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

D. Hansen, E. Gardner, R. Perkins, M. Lines, A. Robbins, “The display applications and physics of the ProFlux wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

Pezzaniti, J. L.

Robbins, A.

D. Hansen, E. Gardner, R. Perkins, M. Lines, A. Robbins, “The display applications and physics of the ProFlux wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

Santarsiero, M.

Schettini, G.

Sergan, T.

T. Sergan, J. Kelly, M. Lavrentovich, E. Gardner, D. Hansen, R. Perkins, J. Hansen, R. Critchfield, “Twisted nematic reflective display with internal wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

Soref, R. A.

R. A. Soref, D. H. McMahon, “Total switching of unpolarized fiber light with a four-port electro-optic liquid crystal device,” Opt. Lett. 5, 378–380 (1980).
[CrossRef]

Stover, C. A.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[CrossRef] [PubMed]

Sullivan, R. T.

L. Li, J. A. Dubrowolski, R. T. Sullivan, Z. Pang, “Novel thin film polarizing beam splitter and its application in high efficiency projection displays,” in Projection Displays V, M. H. Wu, ed., Proc. SPIE3634, 52–62 (1999).
[CrossRef]

Turunen, J.

Weber, M. F.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[CrossRef] [PubMed]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), pp. 837–839.

Wu, Q. H.

I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997), pp. 153–167.

Yu, X. J.

X. J. Yu, H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407–4412 (2003).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

X. J. Yu, H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407–4412 (2003).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

R. A. Soref, D. H. McMahon, “Total switching of unpolarized fiber light with a four-port electro-optic liquid crystal device,” Opt. Lett. 5, 378–380 (1980).
[CrossRef]

Science

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[CrossRef] [PubMed]

Other

E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, New York, 1998), pp. 327–328.

I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997), pp. 153–167.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), pp. 837–839.

T. Sergan, J. Kelly, M. Lavrentovich, E. Gardner, D. Hansen, R. Perkins, J. Hansen, R. Critchfield, “Twisted nematic reflective display with internal wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

D. Hansen, E. Gardner, R. Perkins, M. Lines, A. Robbins, “The display applications and physics of the ProFlux wire grid polarizer,” presented at the Society for Information Display Annual Symposium, 19–24 May 2002.

L. Li, J. A. Dubrowolski, R. T. Sullivan, Z. Pang, “Novel thin film polarizing beam splitter and its application in high efficiency projection displays,” in Projection Displays V, M. H. Wu, ed., Proc. SPIE3634, 52–62 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Basic structure of the LCOS projection system, Config-1.

Fig. 2
Fig. 2

Basic structure of the LCOS projection system, Config-2.

Fig. 3
Fig. 3

Experimental arrangement.

Fig. 4
Fig. 4

Transmission of the WGP as a function of incident angle for structure S.

Fig. 5
Fig. 5

Reflection of the WGP as a function of incident angle for structure S.

Fig. 6
Fig. 6

Reflection and transmission extinction ratios of the WGP as a function of incident angle for the structure S.

Fig. 7
Fig. 7

Absorption of the WGP as a function of incident angle for structure S.

Fig. 8
Fig. 8

Transmission of the WGP as a function of incident angle for structure P.

Fig. 9
Fig. 9

Reflection of the WGP as a function of incident angle for structure P.

Fig. 10
Fig. 10

Reflection and transmission extinction ratios of the WGP as a function of incident angle for structure P.

Fig. 11
Fig. 11

Absorption of the WGP as a function of incident angle for structure P.

Fig. 12
Fig. 12

Light-utilization efficiency of the WGP-based PBS when it is used in a projector with reflective light valves.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

εT=TpTs
εR=RsRp.
CR=Ts,preTsηonRpTp,postTs,preTsηoffRpTp,post+Ts,preTs1-ηoffRsTs,post+Tp,preTp1-ηoffRpTp,post =11εpostεR+1εpreεT+1εLC,
εLC=ηonηoff
CR=11/εR+1/εLC.
CR=11/εpostεR+1/εLC.
CR=11/εpreεR+1/εpostεT+1/εLC,
B=TPRS.
εT=TsTp,
εR=RpRs,
CR=11/εpostεR+1/εpreεT+1/εLC.
CR=11/εpreεR+1/εpostεT+1/εLC.
B=TsRp.

Metrics