Abstract

Using a full-vector finite-element method, we calculate birefringence and dispersion in index-guiding photonic crystal fibers, also called holey fibers. Through real-model simulations the polarization-dependent dispersion in actual fiber structures is numerically demonstrated, for the first time to our knowledge. Furthermore the transverse-electric-field vector distributions in the fabricated holey fibers are also clarified for the two linearly polarized fundamental modes.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
    [CrossRef]
  2. T. A. Birks, J. C. Knight, B. J. Mangan, P. St. J. Russell, “Photonic crystal fibers: an endless variety,” IEICE Trans. Electron. E84-C, 585–592 (2001).
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  4. T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessy single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  5. J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic bandgap guidance in optical fiber,” Science 282, 1476–1478 (1998).
    [CrossRef] [PubMed]
  6. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  7. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett. 35, 63–64 (1999).
    [CrossRef]
  8. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
    [CrossRef]
  9. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriage, B. J. Mangan, T. A. Birks, P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
    [CrossRef]
  10. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanabe, M. Fujita, “High-speed bidirectional polarization division multiplexed optical transmission in ultralow-loss (1.3 dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401 (2001).
    [CrossRef]
  11. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347–1348 (1998).
    [CrossRef]
  12. N. G. R. Broderick, T. M. Monro, P. J. Bennett, D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
    [CrossRef]
  13. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  14. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvester, P. St. J. Russell, “Soliton effects in photonic crystal fibers at 850 nm,” Electron. Lett. 36, 53–55 (2000).
    [CrossRef]
  15. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  16. V. Finazzi, T. M. Monro, D. J. Richardson, “Confinement loss in highly nonlinear holey optical fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 2002), pp. 524–525.
  17. J. C. Knight, T. A. Birks, P. St. J. Russell, J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A 15, 748–752 (1998).
    [CrossRef]
  18. A. Ferrando, E. Silvester, J. J. Miret, P. Andrés, M. V. Andrés, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett. 24, 276–278 (1999).
    [CrossRef]
  19. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. A 17, 1333–1340 (2000).
    [CrossRef]
  20. S. E. Barkou, J. Broeng, A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 46–48 (1999).
    [CrossRef]
  21. J. Broeng, S. E. Barkou, T. Søndergaard, A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000).
    [CrossRef]
  22. D. Mogilevtsev, T. A. Birks, P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
    [CrossRef]
  23. T. M. Monro, D. J. Richardson, N. G. R. Broderick, P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
    [CrossRef]
  24. D. Mogilevtsev, T. A. Birks, P. St. J. Russell, “Localized function method for modeling defect modes in 2-D photonic crystals,” J. Lightwave Technol. 17, 2078–2081 (1999).
    [CrossRef]
  25. T. M. Monro, D. J. Richardson, N. G. R. Broderick, P. J. Bennett, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol. 18, 50–56 (2000).
    [CrossRef]
  26. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
    [CrossRef]
  27. T. P. White, R. C. McPhedran, C. M. de Sterks, L. C. Botten, M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660–1662 (2001).
    [CrossRef]
  28. F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
    [CrossRef]
  29. M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite-element method,” IEICE Trans. Electron. 85-C, 881–888 (2002).
  30. M. Koshiba, K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 1313–1315 (2001).
    [CrossRef]
  31. K. Saitoh, M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite-element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
    [CrossRef]
  32. K. Saitoh, M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett. 14, 1291–1293 (2002).
    [CrossRef]
  33. A. Cucinotta, S. Selleri, L. Vincetti, M. Zoboli, “Perturbation analysis of dispersion properties in photonic crystal fibers through the finite-element method,” J. Lightwave Technol. 20, 1433–1442 (2002).
    [CrossRef]
  34. A. Cucinotta, S. Selleri, L. Vincetti, M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
    [CrossRef]
  35. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314–1319 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  36. K. Saitoh, M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” IEEE Photon. Technol. Lett. 15, 236–238 (2003).
    [CrossRef]
  37. C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Express 7, 113–122 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  38. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. L. Burdge, “Cladding-mode resonances in air–silica microstructure optical fibers,” J. Lightwave Technol. 18, 1084–1100 (2000).
    [CrossRef]
  39. F. Fogli, L. Saccomandi, P. Bassi, “Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers,” Opt. Express 10, 54–59 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  40. G. E. Town, J. T. Lizer, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett. 26, 1042–1044 (2001).
    [CrossRef]
  41. J. T. Lizier, G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 794–796 (2001).
    [CrossRef]
  42. M. Qiu, “Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,” Microwave Opt. Technol. Lett. 30, 327–330 (2001).
    [CrossRef]
  43. M. Koshiba, Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–743 (2000).
    [CrossRef]
  44. D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001); erratum, Opt. Commun. 205, 227 (2002).
    [CrossRef]
  45. A. Suzuki, M. Tanaka, M. Fujita, H. Kubota, K. Suzuki, S. Kawanishi, “The dispersion properties in the long-wavelength region of the photonic crystal fiber,” in Proceedings of the 2002 IEICE General Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 2002), p. 222.
  46. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, “Recent advances in low-loss holey fibers,” in Proceedings of the Seventh Optoelectronics and Communications Conference (Institute of Electronics, Information, and Communication Engineers, Yokohama, Japan, 2002), pp. 628–629.
  47. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  48. K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion,” Opt. Express 11, 843–852 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]

2003 (2)

2002 (7)

F. Fogli, L. Saccomandi, P. Bassi, “Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers,” Opt. Express 10, 54–59 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite-element method,” IEICE Trans. Electron. 85-C, 881–888 (2002).

K. Saitoh, M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite-element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
[CrossRef]

K. Saitoh, M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett. 14, 1291–1293 (2002).
[CrossRef]

A. Cucinotta, S. Selleri, L. Vincetti, M. Zoboli, “Perturbation analysis of dispersion properties in photonic crystal fibers through the finite-element method,” J. Lightwave Technol. 20, 1433–1442 (2002).
[CrossRef]

A. Cucinotta, S. Selleri, L. Vincetti, M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[CrossRef]

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314–1319 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

2001 (9)

M. Koshiba, K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 1313–1315 (2001).
[CrossRef]

M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
[CrossRef]

T. P. White, R. C. McPhedran, C. M. de Sterks, L. C. Botten, M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660–1662 (2001).
[CrossRef]

T. A. Birks, J. C. Knight, B. J. Mangan, P. St. J. Russell, “Photonic crystal fibers: an endless variety,” IEICE Trans. Electron. E84-C, 585–592 (2001).

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanabe, M. Fujita, “High-speed bidirectional polarization division multiplexed optical transmission in ultralow-loss (1.3 dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

G. E. Town, J. T. Lizer, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett. 26, 1042–1044 (2001).
[CrossRef]

J. T. Lizier, G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 794–796 (2001).
[CrossRef]

M. Qiu, “Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,” Microwave Opt. Technol. Lett. 30, 327–330 (2001).
[CrossRef]

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001); erratum, Opt. Commun. 205, 227 (2002).
[CrossRef]

2000 (12)

C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Express 7, 113–122 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. L. Burdge, “Cladding-mode resonances in air–silica microstructure optical fibers,” J. Lightwave Technol. 18, 1084–1100 (2000).
[CrossRef]

M. Koshiba, Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–743 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvester, P. St. J. Russell, “Soliton effects in photonic crystal fibers at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriage, B. J. Mangan, T. A. Birks, P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. A 17, 1333–1340 (2000).
[CrossRef]

J. Broeng, S. E. Barkou, T. Søndergaard, A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, P. J. Bennett, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol. 18, 50–56 (2000).
[CrossRef]

1999 (8)

A. Ferrando, E. Silvester, J. J. Miret, P. Andrés, M. V. Andrés, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett. 24, 276–278 (1999).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
[CrossRef]

D. Mogilevtsev, T. A. Birks, P. St. J. Russell, “Localized function method for modeling defect modes in 2-D photonic crystals,” J. Lightwave Technol. 17, 2078–2081 (1999).
[CrossRef]

S. E. Barkou, J. Broeng, A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 46–48 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett. 35, 63–64 (1999).
[CrossRef]

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[CrossRef]

1998 (4)

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic bandgap guidance in optical fiber,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A 15, 748–752 (1998).
[CrossRef]

D. Mogilevtsev, T. A. Birks, P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
[CrossRef]

1997 (1)

1996 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Andrés, M. V.

Andrés, P.

Arriaga, J.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvester, P. St. J. Russell, “Soliton effects in photonic crystal fibers at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Arriage, J.

Atkin, D. M.

Barkou, S. E.

Bassi, P.

Bennett, P. J.

Birks, T. A.

T. A. Birks, J. C. Knight, B. J. Mangan, P. St. J. Russell, “Photonic crystal fibers: an endless variety,” IEICE Trans. Electron. E84-C, 585–592 (2001).

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriage, B. J. Mangan, T. A. Birks, P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett. 35, 63–64 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

D. Mogilevtsev, T. A. Birks, P. St. J. Russell, “Localized function method for modeling defect modes in 2-D photonic crystals,” J. Lightwave Technol. 17, 2078–2081 (1999).
[CrossRef]

D. Mogilevtsev, T. A. Birks, P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A 15, 748–752 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic bandgap guidance in optical fiber,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessy single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Bjarklev, A.

Botten, L. C.

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Broderick, N. G. R.

Broeng, J.

J. Broeng, S. E. Barkou, T. Søndergaard, A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000).
[CrossRef]

S. E. Barkou, J. Broeng, A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 46–48 (1999).
[CrossRef]

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic bandgap guidance in optical fiber,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Burdge, G. L.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Cucinotta, A.

de Sandro, J. P.

de Sandro, J.-P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

de Sterks, C. M.

Eggleton, B. J.

Fajardo, J. C.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001); erratum, Opt. Commun. 205, 227 (2002).
[CrossRef]

Ferrando, A.

Ferrarini, D.

Finazzi, V.

V. Finazzi, T. M. Monro, D. J. Richardson, “Confinement loss in highly nonlinear holey optical fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 2002), pp. 524–525.

Fogli, F.

Fujita, M.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanabe, M. Fujita, “High-speed bidirectional polarization division multiplexed optical transmission in ultralow-loss (1.3 dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

A. Suzuki, M. Tanaka, M. Fujita, H. Kubota, K. Suzuki, S. Kawanishi, “The dispersion properties in the long-wavelength region of the photonic crystal fiber,” in Proceedings of the 2002 IEICE General Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 2002), p. 222.

Gaeta, A. L.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001); erratum, Opt. Commun. 205, 227 (2002).
[CrossRef]

Gander, M. J.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett. 35, 63–64 (1999).
[CrossRef]

Hasegawa, T.

K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion,” Opt. Express 11, 843–852 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, “Recent advances in low-loss holey fibers,” in Proceedings of the Seventh Optoelectronics and Communications Conference (Institute of Electronics, Information, and Communication Engineers, Yokohama, Japan, 2002), pp. 628–629.

Homoelle, D.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001); erratum, Opt. Commun. 205, 227 (2002).
[CrossRef]

Jones, J. D. C.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett. 35, 63–64 (1999).
[CrossRef]

Kawanishi, S.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanabe, M. Fujita, “High-speed bidirectional polarization division multiplexed optical transmission in ultralow-loss (1.3 dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

A. Suzuki, M. Tanaka, M. Fujita, H. Kubota, K. Suzuki, S. Kawanishi, “The dispersion properties in the long-wavelength region of the photonic crystal fiber,” in Proceedings of the 2002 IEICE General Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 2002), p. 222.

Kerbage, C.

Kerbage, C. E.

Knight, J. C.

T. A. Birks, J. C. Knight, B. J. Mangan, P. St. J. Russell, “Photonic crystal fibers: an endless variety,” IEICE Trans. Electron. E84-C, 585–592 (2001).

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriage, B. J. Mangan, T. A. Birks, P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvester, P. St. J. Russell, “Soliton effects in photonic crystal fibers at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett. 35, 63–64 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic bandgap guidance in optical fiber,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A 15, 748–752 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessy single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Koch, K. W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001); erratum, Opt. Commun. 205, 227 (2002).
[CrossRef]

Koshiba, M.

K. Saitoh, M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” IEEE Photon. Technol. Lett. 15, 236–238 (2003).
[CrossRef]

K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion,” Opt. Express 11, 843–852 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

K. Saitoh, M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett. 14, 1291–1293 (2002).
[CrossRef]

K. Saitoh, M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite-element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
[CrossRef]

M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite-element method,” IEICE Trans. Electron. 85-C, 881–888 (2002).

M. Koshiba, K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 1313–1315 (2001).
[CrossRef]

M. Koshiba, Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–743 (2000).
[CrossRef]

Kubota, H.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanabe, M. Fujita, “High-speed bidirectional polarization division multiplexed optical transmission in ultralow-loss (1.3 dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

A. Suzuki, M. Tanaka, M. Fujita, H. Kubota, K. Suzuki, S. Kawanishi, “The dispersion properties in the long-wavelength region of the photonic crystal fiber,” in Proceedings of the 2002 IEICE General Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 2002), p. 222.

Lizer, J. T.

Lizier, J. T.

J. T. Lizier, G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 794–796 (2001).
[CrossRef]

Mangan, B. J.

T. A. Birks, J. C. Knight, B. J. Mangan, P. St. J. Russell, “Photonic crystal fibers: an endless variety,” IEICE Trans. Electron. E84-C, 585–592 (2001).

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriage, B. J. Mangan, T. A. Birks, P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Martijn de Sterke, C.

McBride, R.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett. 35, 63–64 (1999).
[CrossRef]

McPhedran, R. C.

Miret, J. J.

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

Mogilevtsev, D.

Monro, T. M.

Nishimura, M.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, “Recent advances in low-loss holey fibers,” in Proceedings of the Seventh Optoelectronics and Communications Conference (Institute of Electronics, Information, and Communication Engineers, Yokohama, Japan, 2002), pp. 628–629.

Onishi, M.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, “Recent advances in low-loss holey fibers,” in Proceedings of the Seventh Optoelectronics and Communications Conference (Institute of Electronics, Information, and Communication Engineers, Yokohama, Japan, 2002), pp. 628–629.

Ortigosa-Blanch, A.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvester, P. St. J. Russell, “Soliton effects in photonic crystal fibers at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriage, B. J. Mangan, T. A. Birks, P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

Ouzounov, D.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001); erratum, Opt. Commun. 205, 227 (2002).
[CrossRef]

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Qiu, M.

M. Qiu, “Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,” Microwave Opt. Technol. Lett. 30, 327–330 (2001).
[CrossRef]

Ranka, J. K.

Richardson, D. J.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Russell, P. St. J.

T. A. Birks, J. C. Knight, B. J. Mangan, P. St. J. Russell, “Photonic crystal fibers: an endless variety,” IEICE Trans. Electron. E84-C, 585–592 (2001).

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvester, P. St. J. Russell, “Soliton effects in photonic crystal fibers at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriage, B. J. Mangan, T. A. Birks, P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett. 35, 63–64 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

D. Mogilevtsev, T. A. Birks, P. St. J. Russell, “Localized function method for modeling defect modes in 2-D photonic crystals,” J. Lightwave Technol. 17, 2078–2081 (1999).
[CrossRef]

D. Mogilevtsev, T. A. Birks, P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A 15, 748–752 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic bandgap guidance in optical fiber,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessy single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Saccomandi, L.

Saitoh, K.

K. Saitoh, M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” IEEE Photon. Technol. Lett. 15, 236–238 (2003).
[CrossRef]

K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion,” Opt. Express 11, 843–852 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

K. Saitoh, M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett. 14, 1291–1293 (2002).
[CrossRef]

K. Saitoh, M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite-element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
[CrossRef]

M. Koshiba, K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 1313–1315 (2001).
[CrossRef]

Sasaoka, E.

K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion,” Opt. Express 11, 843–852 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, “Recent advances in low-loss holey fibers,” in Proceedings of the Seventh Optoelectronics and Communications Conference (Institute of Electronics, Information, and Communication Engineers, Yokohama, Japan, 2002), pp. 628–629.

Selleri, S.

Silvester, E.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvester, P. St. J. Russell, “Soliton effects in photonic crystal fibers at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

A. Ferrando, E. Silvester, J. J. Miret, P. Andrés, M. V. Andrés, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett. 24, 276–278 (1999).
[CrossRef]

Silvestre, E.

Søndergaard, T.

Steel, M. J.

Stentz, A. J.

Suzuki, A.

A. Suzuki, M. Tanaka, M. Fujita, H. Kubota, K. Suzuki, S. Kawanishi, “The dispersion properties in the long-wavelength region of the photonic crystal fiber,” in Proceedings of the 2002 IEICE General Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 2002), p. 222.

Suzuki, K.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanabe, M. Fujita, “High-speed bidirectional polarization division multiplexed optical transmission in ultralow-loss (1.3 dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

A. Suzuki, M. Tanaka, M. Fujita, H. Kubota, K. Suzuki, S. Kawanishi, “The dispersion properties in the long-wavelength region of the photonic crystal fiber,” in Proceedings of the 2002 IEICE General Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 2002), p. 222.

Tanabe, M.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanabe, M. Fujita, “High-speed bidirectional polarization division multiplexed optical transmission in ultralow-loss (1.3 dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

Tanaka, M.

A. Suzuki, M. Tanaka, M. Fujita, H. Kubota, K. Suzuki, S. Kawanishi, “The dispersion properties in the long-wavelength region of the photonic crystal fiber,” in Proceedings of the 2002 IEICE General Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 2002), p. 222.

Town, G. E.

J. T. Lizier, G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 794–796 (2001).
[CrossRef]

G. E. Town, J. T. Lizer, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett. 26, 1042–1044 (2001).
[CrossRef]

Tsuji, Y.

Vincetti, L.

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriage, B. J. Mangan, T. A. Birks, P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvester, P. St. J. Russell, “Soliton effects in photonic crystal fibers at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

Webb, W. W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001); erratum, Opt. Commun. 205, 227 (2002).
[CrossRef]

West, J. A.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001); erratum, Opt. Commun. 205, 227 (2002).
[CrossRef]

Westbrook, P. S.

White, C. A.

White, T. P.

Windeler, R. S.

Zipfel, W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001); erratum, Opt. Commun. 205, 227 (2002).
[CrossRef]

Zoboli, M.

Electron. Lett. (4)

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanabe, M. Fujita, “High-speed bidirectional polarization division multiplexed optical transmission in ultralow-loss (1.3 dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett. 35, 63–64 (1999).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvester, P. St. J. Russell, “Soliton effects in photonic crystal fibers at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh, M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite-element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

K. Saitoh, M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett. 14, 1291–1293 (2002).
[CrossRef]

M. Koshiba, K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 1313–1315 (2001).
[CrossRef]

A. Cucinotta, S. Selleri, L. Vincetti, M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[CrossRef]

K. Saitoh, M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” IEEE Photon. Technol. Lett. 15, 236–238 (2003).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

J. T. Lizier, G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 794–796 (2001).
[CrossRef]

IEICE Trans. Electron. (2)

T. A. Birks, J. C. Knight, B. J. Mangan, P. St. J. Russell, “Photonic crystal fibers: an endless variety,” IEICE Trans. Electron. E84-C, 585–592 (2001).

M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite-element method,” IEICE Trans. Electron. 85-C, 881–888 (2002).

J. Lightwave Technol. (6)

J. Opt. Soc. Am. A (2)

Microwave Opt. Technol. Lett. (1)

M. Qiu, “Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,” Microwave Opt. Technol. Lett. 30, 327–330 (2001).
[CrossRef]

Opt. Commun. (1)

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001); erratum, Opt. Commun. 205, 227 (2002).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (2)

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999).
[CrossRef]

F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Opt. Lett. (13)

A. Ferrando, E. Silvester, J. J. Miret, P. Andrés, M. V. Andrés, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett. 24, 276–278 (1999).
[CrossRef]

M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
[CrossRef]

T. P. White, R. C. McPhedran, C. M. de Sterks, L. C. Botten, M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660–1662 (2001).
[CrossRef]

S. E. Barkou, J. Broeng, A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 46–48 (1999).
[CrossRef]

J. Broeng, S. E. Barkou, T. Søndergaard, A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000).
[CrossRef]

D. Mogilevtsev, T. A. Birks, P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriage, B. J. Mangan, T. A. Birks, P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessy single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[CrossRef]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

G. E. Town, J. T. Lizer, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett. 26, 1042–1044 (2001).
[CrossRef]

Science (2)

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic bandgap guidance in optical fiber,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Other (4)

V. Finazzi, T. M. Monro, D. J. Richardson, “Confinement loss in highly nonlinear holey optical fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 2002), pp. 524–525.

A. Suzuki, M. Tanaka, M. Fujita, H. Kubota, K. Suzuki, S. Kawanishi, “The dispersion properties in the long-wavelength region of the photonic crystal fiber,” in Proceedings of the 2002 IEICE General Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 2002), p. 222.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, “Recent advances in low-loss holey fibers,” in Proceedings of the Seventh Optoelectronics and Communications Conference (Institute of Electronics, Information, and Communication Engineers, Yokohama, Japan, 2002), pp. 628–629.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic representation of a holey fiber.

Fig. 2
Fig. 2

Curvilinear hybrid-edge/nodal elements.

Fig. 3
Fig. 3

Transverse-electric-field vector distributions of (a) HE11 x and (b) HE11 y modes.

Fig. 4
Fig. 4

Transverse-electric-field vector distributions of (a) TE01, (b) TM01, (c) HE21′, and (d) HE21″ modes.

Fig. 5
Fig. 5

Transverse-electric-field vector distributions of (a) EH11′, (b) EH11″, (c) HE31′, and (d) HE31″ modes.

Fig. 6
Fig. 6

Transverse-electric-field vector distributions of (a) HE12 x and (b) HE12 y modes.

Fig. 7
Fig. 7

(a) Highly birefringent holey fiber, (b) example of element division and transverse-electric-field vector distributions of (c) slow- and (d) fast-axis modes.

Fig. 8
Fig. 8

Modal birefringence in the highly birefringent holey fiber in Fig. 7(a).

Fig. 9
Fig. 9

Idealized model corresponding to the highly birefringent holey fiber in Fig. 7(a).

Fig. 10
Fig. 10

Convergence of the modal birefringence.

Fig. 11
Fig. 11

Chromatic dispersion in (a) short-wavelength and (b) long-wavelength regions.

Fig. 12
Fig. 12

(a) Holey fiber with two rings of arrays of air holes, (b) example of an element division and the transverse-electric-field vector distributions of (c) slow- and (d) fast-axis modes.

Fig. 13
Fig. 13

(a) Dispersion and (b) birefringence in the holey fiber with two rings of arrays of air holes in Fig. 12(a).

Fig. 14
Fig. 14

(a) Cobweb fiber with very large holes, (b) example of an element division and the transverse-electric-field vector distributions of (c) slow- and (d) fast-axis modes.

Fig. 15
Fig. 15

(a) Dispersion and (b) birefringence in the cobweb fiber in Fig. 14(a).

Fig. 16
Fig. 16

(a) Holey fiber with three rings of arrays of air holes, (b) example of an element division and the transverse-electric-field vector distributions of (c) slow- and (d) fast-axis modes.

Fig. 17
Fig. 17

(a) Dispersion and (b) birefringence in the holey fiber with three rings of arrays of air holes in Fig. 16(a).

Tables (1)

Tables Icon

Table 1 Conditions of Symmetry Boundaries

Metrics