Abstract

Laser-induced breakdown spectroscopy (LIBS) has been used to study bacterial spores, molds, pollens, and proteins. Biosamples were prepared and deposited onto porous silver substrates. LIBS data from the individual laser shots were analyzed by principal-components analysis and were found to contain adequate information to afford discrimination among the different biomaterials. Additional discrimination within the three bacilli studied appears feasible.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski, D. A. Cremers, T. R. Loree, “Detection of beryllium by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 38, 349–355 (1983).
    [CrossRef]
  2. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Applied Spectrosc. 50, 222–233 (1996).
    [CrossRef]
  3. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
    [CrossRef]
  4. T. M. Moskal, D. W. Hahn, “On-line sorting of wood treated with chromated copper arsenate laser-induced breakdown spectroscopy,” Applied Spectrosc. 56, 1337–1344 (2002).
    [CrossRef]
  5. O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevsky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).
  6. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
  7. A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, H. H. Telle, “Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Opt. 42, 6119–6132 (2003).
    [CrossRef] [PubMed]
  8. S. Morel, N. Leone, P. Adam, J. Amouroux, “Detection of bacteria by time-resolved laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6184–6191 (2003).
    [CrossRef] [PubMed]
  9. B. M. Wise, N. B. Gallagher, S. W. Butler, D. White, G. G. Barna, “A comparison of principal components analysis, multi-way principal components analysis, tri-linear decomposition and parallel factor analysis for fault detection in a semiconductor etch process,” J. Chemometrics 13, 379–396 (1999).
    [CrossRef]
  10. K. R. Beebe, R. J. Pell, M. B. Seasholtz, Chemometrics: A Practical Guide (Wiley-Interscience, New York, 1998).
  11. M. Meloun, J. Capek, P. Miksik, R. G. Brereton, “Critical comparison of methods predicting the number of components in spectroscopic data,” Anal. Chim. Acta 423, 51–68 (2000).
    [CrossRef]
  12. L. St-Onge, R. Sing, S. Bechard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic sample in ambient air,” Appl. Phys. A 69, S913–S916 (1999).
  13. J. Hybl, MIT Lincoln Laboratory, 244 Wood Street, Lexington, Mass. 02420 (personal communication, 2003).
  14. B. Smith, Department of Chemistry University of Florida Gainesville, Fla. 32611 (personal communication, 2003).

2003 (2)

2002 (1)

T. M. Moskal, D. W. Hahn, “On-line sorting of wood treated with chromated copper arsenate laser-induced breakdown spectroscopy,” Applied Spectrosc. 56, 1337–1344 (2002).
[CrossRef]

2001 (1)

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

2000 (2)

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevsky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

M. Meloun, J. Capek, P. Miksik, R. G. Brereton, “Critical comparison of methods predicting the number of components in spectroscopic data,” Anal. Chim. Acta 423, 51–68 (2000).
[CrossRef]

1999 (3)

L. St-Onge, R. Sing, S. Bechard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic sample in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

B. M. Wise, N. B. Gallagher, S. W. Butler, D. White, G. G. Barna, “A comparison of principal components analysis, multi-way principal components analysis, tri-linear decomposition and parallel factor analysis for fault detection in a semiconductor etch process,” J. Chemometrics 13, 379–396 (1999).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

1996 (1)

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Applied Spectrosc. 50, 222–233 (1996).
[CrossRef]

1983 (1)

L. J. Radziemski, D. A. Cremers, T. R. Loree, “Detection of beryllium by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 38, 349–355 (1983).
[CrossRef]

Adam, P.

Amouroux, J.

Barna, G. G.

B. M. Wise, N. B. Gallagher, S. W. Butler, D. White, G. G. Barna, “A comparison of principal components analysis, multi-way principal components analysis, tri-linear decomposition and parallel factor analysis for fault detection in a semiconductor etch process,” J. Chemometrics 13, 379–396 (1999).
[CrossRef]

Bechard, S.

L. St-Onge, R. Sing, S. Bechard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic sample in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Beddows, D. C. S.

A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, H. H. Telle, “Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Opt. 42, 6119–6132 (2003).
[CrossRef] [PubMed]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevsky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Beebe, K. R.

K. R. Beebe, R. J. Pell, M. B. Seasholtz, Chemometrics: A Practical Guide (Wiley-Interscience, New York, 1998).

Boyain-Goitia, A. R.

Brereton, R. G.

M. Meloun, J. Capek, P. Miksik, R. G. Brereton, “Critical comparison of methods predicting the number of components in spectroscopic data,” Anal. Chim. Acta 423, 51–68 (2000).
[CrossRef]

Butler, S. W.

B. M. Wise, N. B. Gallagher, S. W. Butler, D. White, G. G. Barna, “A comparison of principal components analysis, multi-way principal components analysis, tri-linear decomposition and parallel factor analysis for fault detection in a semiconductor etch process,” J. Chemometrics 13, 379–396 (1999).
[CrossRef]

Capek, J.

M. Meloun, J. Capek, P. Miksik, R. G. Brereton, “Critical comparison of methods predicting the number of components in spectroscopic data,” Anal. Chim. Acta 423, 51–68 (2000).
[CrossRef]

Cremers, D. A.

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Applied Spectrosc. 50, 222–233 (1996).
[CrossRef]

L. J. Radziemski, D. A. Cremers, T. R. Loree, “Detection of beryllium by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 38, 349–355 (1983).
[CrossRef]

Ferris, M. J.

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Applied Spectrosc. 50, 222–233 (1996).
[CrossRef]

Foster, L. E.

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Applied Spectrosc. 50, 222–233 (1996).
[CrossRef]

French, P. D.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Gallagher, N. B.

B. M. Wise, N. B. Gallagher, S. W. Butler, D. White, G. G. Barna, “A comparison of principal components analysis, multi-way principal components analysis, tri-linear decomposition and parallel factor analysis for fault detection in a semiconductor etch process,” J. Chemometrics 13, 379–396 (1999).
[CrossRef]

Griffiths, B. C.

Hahn, D. W.

T. M. Moskal, D. W. Hahn, “On-line sorting of wood treated with chromated copper arsenate laser-induced breakdown spectroscopy,” Applied Spectrosc. 56, 1337–1344 (2002).
[CrossRef]

Harmon, R. S.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Hybl, J.

J. Hybl, MIT Lincoln Laboratory, 244 Wood Street, Lexington, Mass. 02420 (personal communication, 2003).

Kaiser, J.

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevsky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Kukhlevsky, S. V.

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevsky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

Leone, N.

Liska, M.

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevsky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Loree, T. R.

L. J. Radziemski, D. A. Cremers, T. R. Loree, “Detection of beryllium by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 38, 349–355 (1983).
[CrossRef]

McNesby, K. L.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Meloun, M.

M. Meloun, J. Capek, P. Miksik, R. G. Brereton, “Critical comparison of methods predicting the number of components in spectroscopic data,” Anal. Chim. Acta 423, 51–68 (2000).
[CrossRef]

Miksik, P.

M. Meloun, J. Capek, P. Miksik, R. G. Brereton, “Critical comparison of methods predicting the number of components in spectroscopic data,” Anal. Chim. Acta 423, 51–68 (2000).
[CrossRef]

Miziolek, A. W.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Morel, S.

Morris, G. W.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Moskal, T. M.

T. M. Moskal, D. W. Hahn, “On-line sorting of wood treated with chromated copper arsenate laser-induced breakdown spectroscopy,” Applied Spectrosc. 56, 1337–1344 (2002).
[CrossRef]

Pell, R. J.

K. R. Beebe, R. J. Pell, M. B. Seasholtz, Chemometrics: A Practical Guide (Wiley-Interscience, New York, 1998).

Radziemski, L. J.

L. J. Radziemski, D. A. Cremers, T. R. Loree, “Detection of beryllium by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 38, 349–355 (1983).
[CrossRef]

Sabsabi, M.

L. St-Onge, R. Sing, S. Bechard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic sample in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Samek, O.

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevsky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Seasholtz, M. B.

K. R. Beebe, R. J. Pell, M. B. Seasholtz, Chemometrics: A Practical Guide (Wiley-Interscience, New York, 1998).

Sing, R.

L. St-Onge, R. Sing, S. Bechard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic sample in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Smith, B.

B. Smith, Department of Chemistry University of Florida Gainesville, Fla. 32611 (personal communication, 2003).

St-Onge, L.

L. St-Onge, R. Sing, S. Bechard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic sample in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Telle, H. H.

A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, H. H. Telle, “Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Opt. 42, 6119–6132 (2003).
[CrossRef] [PubMed]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevsky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Wainner, R. T.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

White, D.

B. M. Wise, N. B. Gallagher, S. W. Butler, D. White, G. G. Barna, “A comparison of principal components analysis, multi-way principal components analysis, tri-linear decomposition and parallel factor analysis for fault detection in a semiconductor etch process,” J. Chemometrics 13, 379–396 (1999).
[CrossRef]

Wise, B. M.

B. M. Wise, N. B. Gallagher, S. W. Butler, D. White, G. G. Barna, “A comparison of principal components analysis, multi-way principal components analysis, tri-linear decomposition and parallel factor analysis for fault detection in a semiconductor etch process,” J. Chemometrics 13, 379–396 (1999).
[CrossRef]

Yamamoto, K. Y.

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Applied Spectrosc. 50, 222–233 (1996).
[CrossRef]

Anal. Chim. Acta (1)

M. Meloun, J. Capek, P. Miksik, R. G. Brereton, “Critical comparison of methods predicting the number of components in spectroscopic data,” Anal. Chim. Acta 423, 51–68 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (2)

L. St-Onge, R. Sing, S. Bechard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic sample in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Applied Spectrosc. (2)

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Applied Spectrosc. 50, 222–233 (1996).
[CrossRef]

T. M. Moskal, D. W. Hahn, “On-line sorting of wood treated with chromated copper arsenate laser-induced breakdown spectroscopy,” Applied Spectrosc. 56, 1337–1344 (2002).
[CrossRef]

J. Chemometrics (1)

B. M. Wise, N. B. Gallagher, S. W. Butler, D. White, G. G. Barna, “A comparison of principal components analysis, multi-way principal components analysis, tri-linear decomposition and parallel factor analysis for fault detection in a semiconductor etch process,” J. Chemometrics 13, 379–396 (1999).
[CrossRef]

J. Clin. Laser Med. Surg. (1)

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevsky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

Spectrochim. Acta Part B (2)

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

L. J. Radziemski, D. A. Cremers, T. R. Loree, “Detection of beryllium by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 38, 349–355 (1983).
[CrossRef]

Other (3)

J. Hybl, MIT Lincoln Laboratory, 244 Wood Street, Lexington, Mass. 02420 (personal communication, 2003).

B. Smith, Department of Chemistry University of Florida Gainesville, Fla. 32611 (personal communication, 2003).

K. R. Beebe, R. J. Pell, M. B. Seasholtz, Chemometrics: A Practical Guide (Wiley-Interscience, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for LIBS.

Fig. 2
Fig. 2

LIBS spectrum of the silver membrane filter used as a substrate for the biological sample’s preparation. Data compiled from 20 shots taken on different areas of a clean membrane filter. Emission at 747-nm and longer wavelengths is due to the nitrogen and oxygen components of laboratory air.

Fig. 3
Fig. 3

LIBS Spectra of B. cereus (Bc), B. thuringiensis (Bt), and B. subtilis (BG) endospores on a silver membrane background. Data were compiled from 30 LIBS shots on different areas of the uniform film deposited upon the silver substrate.

Fig. 4
Fig. 4

LIBS Spectra of Cladosporum herbarum (Clad) and Alternaria tenuis (Alt) on a silver membrane background. Data were compiled from 15 LIBS shots on different areas of the uniform film deposited upon the silver substrate.

Fig. 5
Fig. 5

LIBS Spectra of Virginia oak pollen (VAoak), desert ragweed pollen (Rag), and ovalbumin (Ova) upon a silver membrane background. Data were compiled from 5–13 LIBS shots on different areas of the uniform film deposited upon the silver substrate.

Fig. 6
Fig. 6

Loadings of the first two principal components from the model constructed from single LIBS shots of the pollens, molds, and bacterial spores: Al, Alternaria tenuis; cl, Cladosporum herbarum; BG, B. subtillis; Bc, B. cereus; Bt, B. thuringiensis; Vo, Virginia oak pollen; Dr, desert ragweed pollen; ov, ovalbumin.

Tables (2)

Tables Icon

Table 1 Peak Identification of Species Observed in the Bacterial Spore B. subtilis

Tables Icon

Table 2 Distribution of Variance in the PCA Model

Metrics