Abstract

Spectra from plasma produced by laser-induced breakdown of graphite were recorded and analyzed to increase our understanding of the way in which carbon nanoparticles are created during Nd:YAG laser ablation of graphite. The effects of various buffer gases were studied. Electron density and temperature were determined from spectra of the first and second ions of atomic carbon. The C2 Swan spectrum was also prominent in most of the measured spectra. Temperature was inferred from each experimental Swan spectrum by determination of the temperature for which a synthetic Swan spectrum best fitted, in the least-squares sense, the measured spectrum.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Abilasha, P. S. R. Prasad, R. K. Thareja, “Laser-produced carbon plasma in an ambient gas,” Phys. Rev. E 48, 2929–2933 (1993).
    [CrossRef]
  2. S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
    [CrossRef]
  3. S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 69, 1–9 (1999).
  4. S. Arepalli, C. D. Scott, P. Nikolaev, R. E. Smalley, “Electronically excited C2 from laser photodissociated C60,” Chem. Phys. Lett. 320, 26–34 (2000).
    [CrossRef]
  5. A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
    [CrossRef]
  6. S. S. Harilal, “Expansion dynamics of laser ablated carbon plasma plume in helium ambient,” Appl. Surf. Sci. 172, 103–109 (2001).
    [CrossRef]
  7. C. G. Parigger, G. Guan, J. O. Hornkohl, “Measurement and analysis of OH emission spectra following laser-induced breakdown,” Appl. Opt. 42, 5986–5991 (2003), and references therein.
    [CrossRef] [PubMed]
  8. J. O. Hornkohl, C. G. Parigger, “Boltzmann Equilibrium Spectrum Program (BESP),” http.//view.utsi.edu/besp .
  9. C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Laser-induced breakdown spectroscopy: molecular spectra with BESP and NEQAIR,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 104–105.
  10. C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
    [CrossRef]
  11. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 17, pp. 676–677.
  12. S. L. Chin, “Laser beam transport,” in Laser Applications in Physical Chemistry, D. K. Evans, ed. (Marcel Dekker, New York, 1989), Chap. 2, pp. 39–62.
  13. R. N. Compton, J. C. Miller, “Multiphoton ionization photoelectron spectroscopy: MPI-PES,” in Laser Applications in Physical Chemistry, D. K. Evans, ed. (Marcel Dekker, New York, 1989), Chap. 6, pp. 221–306.
  14. N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart & Winston, New York, 1976), p. 304.
  15. G. M. Weyl, “Physics of laser-induced breakdown: an update,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), Chap. 1, pp. 1–67.
  16. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964), Tables 4 and 5.
  17. J. H. Van Vleck, “The coupling of angular momentum vectors in molecules,” Rev. Mod. Phys. 23, 213–227 (1951).
    [CrossRef]
  18. I. Kovacs, Rotational Structure in The Spectra of Diatomic Molecules (American Elsevier, New York, 1969), p. 14.
  19. R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
    [CrossRef]
  20. B. R. Judd, Angular Momentum Theory for Diatomic Molecules (Academic, New York, 1975), pp. 4–5.
  21. M. Mizushima, The Theory of Rotating Diatomic Molecules (Wiley, New York, 1975).
  22. J. D. Graybeal, Molecular Spectroscopy (McGraw-Hill, New York, 1988), pp. 54–61.
  23. H. Lefebvre-Brion, R. W. Field, Perturbations in the Spectra of Diatomic Molecules (Academic, Orlando, Fla., 1986), p. 98.
  24. R. N. Zare, Angular Momentum (Wiley, New York, 1988).
  25. H. W. Kroto, Molecular Rotation Spectra (Dover, New York, 1992), pp. 15–17.
  26. P. R. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed. (NRC Research Press, Ottawa, Canada, 1998).
  27. J. G. Phillips, S. P. Davis, The Swan System of the C2 Molecule (U. California Press, Berkeley, Calif., 1968).
  28. C. F. Chabalowski, R. J. Buenker, S. D. Peyerimhoff, “Theoretical study of the electronic transition moments for the d3πg ↔ a3πu(Swan) and e3Π ↔ a3Πu (Fox-Herzberg) band in C2,” Chem. Phys. Lett. 83, 441–448 (1981).
    [CrossRef]
  29. C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d3Πg state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
    [CrossRef]
  30. J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
    [CrossRef]

2003 (1)

2001 (1)

S. S. Harilal, “Expansion dynamics of laser ablated carbon plasma plume in helium ambient,” Appl. Surf. Sci. 172, 103–109 (2001).
[CrossRef]

2000 (2)

S. Arepalli, C. D. Scott, P. Nikolaev, R. E. Smalley, “Electronically excited C2 from laser photodissociated C60,” Chem. Phys. Lett. 320, 26–34 (2000).
[CrossRef]

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
[CrossRef]

1999 (1)

S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 69, 1–9 (1999).

1997 (1)

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

1994 (1)

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

1993 (1)

Abilasha, P. S. R. Prasad, R. K. Thareja, “Laser-produced carbon plasma in an ambient gas,” Phys. Rev. E 48, 2929–2933 (1993).
[CrossRef]

1988 (1)

C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d3Πg state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
[CrossRef]

1981 (1)

C. F. Chabalowski, R. J. Buenker, S. D. Peyerimhoff, “Theoretical study of the electronic transition moments for the d3πg ↔ a3πu(Swan) and e3Π ↔ a3Πu (Fox-Herzberg) band in C2,” Chem. Phys. Lett. 83, 441–448 (1981).
[CrossRef]

1973 (1)

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
[CrossRef]

1965 (1)

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

1951 (1)

J. H. Van Vleck, “The coupling of angular momentum vectors in molecules,” Rev. Mod. Phys. 23, 213–227 (1951).
[CrossRef]

Abilasha,

Abilasha, P. S. R. Prasad, R. K. Thareja, “Laser-produced carbon plasma in an ambient gas,” Phys. Rev. E 48, 2929–2933 (1993).
[CrossRef]

Albritton, D. L.

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
[CrossRef]

Arepalli, S.

S. Arepalli, C. D. Scott, P. Nikolaev, R. E. Smalley, “Electronically excited C2 from laser photodissociated C60,” Chem. Phys. Lett. 320, 26–34 (2000).
[CrossRef]

S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 69, 1–9 (1999).

Ashcroft, N. W.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart & Winston, New York, 1976), p. 304.

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

Buenker, R. J.

C. F. Chabalowski, R. J. Buenker, S. D. Peyerimhoff, “Theoretical study of the electronic transition moments for the d3πg ↔ a3πu(Swan) and e3Π ↔ a3Πu (Fox-Herzberg) band in C2,” Chem. Phys. Lett. 83, 441–448 (1981).
[CrossRef]

Bunker, P. R.

P. R. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed. (NRC Research Press, Ottawa, Canada, 1998).

Chabalowski, C. F.

C. F. Chabalowski, R. J. Buenker, S. D. Peyerimhoff, “Theoretical study of the electronic transition moments for the d3πg ↔ a3πu(Swan) and e3Π ↔ a3Πu (Fox-Herzberg) band in C2,” Chem. Phys. Lett. 83, 441–448 (1981).
[CrossRef]

Chin, S. L.

S. L. Chin, “Laser beam transport,” in Laser Applications in Physical Chemistry, D. K. Evans, ed. (Marcel Dekker, New York, 1989), Chap. 2, pp. 39–62.

Compton, R. N.

R. N. Compton, J. C. Miller, “Multiphoton ionization photoelectron spectroscopy: MPI-PES,” in Laser Applications in Physical Chemistry, D. K. Evans, ed. (Marcel Dekker, New York, 1989), Chap. 6, pp. 221–306.

Costes, M.

C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d3Πg state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
[CrossRef]

Davis, S. P.

J. G. Phillips, S. P. Davis, The Swan System of the C2 Molecule (U. California Press, Berkeley, Calif., 1968).

Dorthe, G.

C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d3Πg state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
[CrossRef]

Fan, X.

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
[CrossRef]

Field, R. W.

H. Lefebvre-Brion, R. W. Field, Perturbations in the Spectra of Diatomic Molecules (Academic, Orlando, Fla., 1986), p. 98.

Geohegan, D. B.

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
[CrossRef]

Graybeal, J. D.

J. D. Graybeal, Molecular Spectroscopy (McGraw-Hill, New York, 1988), pp. 54–61.

Griem, H. R.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964), Tables 4 and 5.

Guan, G.

Harilal, S. S.

S. S. Harilal, “Expansion dynamics of laser ablated carbon plasma plume in helium ambient,” Appl. Surf. Sci. 172, 103–109 (2001).
[CrossRef]

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

Harrop, W. J.

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
[CrossRef]

Holmes, W.

S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 69, 1–9 (1999).

Hornkohl, J. O.

C. G. Parigger, G. Guan, J. O. Hornkohl, “Measurement and analysis of OH emission spectra following laser-induced breakdown,” Appl. Opt. 42, 5986–5991 (2003), and references therein.
[CrossRef] [PubMed]

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Laser-induced breakdown spectroscopy: molecular spectra with BESP and NEQAIR,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 104–105.

Issac, R. C.

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

Jensen, P.

P. R. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed. (NRC Research Press, Ottawa, Canada, 1998).

Judd, B. R.

B. R. Judd, Angular Momentum Theory for Diatomic Molecules (Academic, New York, 1975), pp. 4–5.

Keszler, A. M.

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Laser-induced breakdown spectroscopy: molecular spectra with BESP and NEQAIR,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 104–105.

Kovacs, I.

I. Kovacs, Rotational Structure in The Spectra of Diatomic Molecules (American Elsevier, New York, 1969), p. 14.

Kroto, H. W.

H. W. Kroto, Molecular Rotation Spectra (Dover, New York, 1992), pp. 15–17.

Lefebvre-Brion, H.

H. Lefebvre-Brion, R. W. Field, Perturbations in the Spectra of Diatomic Molecules (Academic, Orlando, Fla., 1986), p. 98.

Lewis, J. W. L.

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

Mead, R.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

Mermin, N. D.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart & Winston, New York, 1976), p. 304.

Miller, J. C.

R. N. Compton, J. C. Miller, “Multiphoton ionization photoelectron spectroscopy: MPI-PES,” in Laser Applications in Physical Chemistry, D. K. Evans, ed. (Marcel Dekker, New York, 1989), Chap. 6, pp. 221–306.

Mizushima, M.

M. Mizushima, The Theory of Rotating Diatomic Molecules (Wiley, New York, 1975).

Nampoori, V. P. N.

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

Naulin, C.

C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d3Πg state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
[CrossRef]

Nelder, J. A.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

Nemes, L.

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Laser-induced breakdown spectroscopy: molecular spectra with BESP and NEQAIR,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 104–105.

Nikolaev, P.

S. Arepalli, C. D. Scott, P. Nikolaev, R. E. Smalley, “Electronically excited C2 from laser photodissociated C60,” Chem. Phys. Lett. 320, 26–34 (2000).
[CrossRef]

S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 69, 1–9 (1999).

Parigger, C.

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

Parigger, C. G.

C. G. Parigger, G. Guan, J. O. Hornkohl, “Measurement and analysis of OH emission spectra following laser-induced breakdown,” Appl. Opt. 42, 5986–5991 (2003), and references therein.
[CrossRef] [PubMed]

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Laser-induced breakdown spectroscopy: molecular spectra with BESP and NEQAIR,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 104–105.

Pennycook, S. J.

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
[CrossRef]

Peyerimhoff, S. D.

C. F. Chabalowski, R. J. Buenker, S. D. Peyerimhoff, “Theoretical study of the electronic transition moments for the d3πg ↔ a3πu(Swan) and e3Π ↔ a3Πu (Fox-Herzberg) band in C2,” Chem. Phys. Lett. 83, 441–448 (1981).
[CrossRef]

Phillips, J. G.

J. G. Phillips, S. P. Davis, The Swan System of the C2 Molecule (U. California Press, Berkeley, Calif., 1968).

Plemmons, D. H.

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

Prasad, P. S. R.

Abilasha, P. S. R. Prasad, R. K. Thareja, “Laser-produced carbon plasma in an ambient gas,” Phys. Rev. E 48, 2929–2933 (1993).
[CrossRef]

Puretzky, A. A.

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
[CrossRef]

Schmeltekopf, A. L.

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
[CrossRef]

Scott, C. D.

S. Arepalli, C. D. Scott, P. Nikolaev, R. E. Smalley, “Electronically excited C2 from laser photodissociated C60,” Chem. Phys. Lett. 320, 26–34 (2000).
[CrossRef]

S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 69, 1–9 (1999).

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 17, pp. 676–677.

Smalley, R. E.

S. Arepalli, C. D. Scott, P. Nikolaev, R. E. Smalley, “Electronically excited C2 from laser photodissociated C60,” Chem. Phys. Lett. 320, 26–34 (2000).
[CrossRef]

Thareja, R. K.

Abilasha, P. S. R. Prasad, R. K. Thareja, “Laser-produced carbon plasma in an ambient gas,” Phys. Rev. E 48, 2929–2933 (1993).
[CrossRef]

Vallabhan, C. G.

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

Van Vleck, J. H.

J. H. Van Vleck, “The coupling of angular momentum vectors in molecules,” Rev. Mod. Phys. 23, 213–227 (1951).
[CrossRef]

Weyl, G. M.

G. M. Weyl, “Physics of laser-induced breakdown: an update,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), Chap. 1, pp. 1–67.

Zare, R. N.

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
[CrossRef]

R. N. Zare, Angular Momentum (Wiley, New York, 1988).

Appl. Opt. (1)

Appl. Phys. A (1)

S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 69, 1–9 (1999).

Appl. Phys. Lett. (1)

A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
[CrossRef]

Appl. Surf. Sci. (1)

S. S. Harilal, “Expansion dynamics of laser ablated carbon plasma plume in helium ambient,” Appl. Surf. Sci. 172, 103–109 (2001).
[CrossRef]

Chem. Phys. Lett. (3)

S. Arepalli, C. D. Scott, P. Nikolaev, R. E. Smalley, “Electronically excited C2 from laser photodissociated C60,” Chem. Phys. Lett. 320, 26–34 (2000).
[CrossRef]

C. F. Chabalowski, R. J. Buenker, S. D. Peyerimhoff, “Theoretical study of the electronic transition moments for the d3πg ↔ a3πu(Swan) and e3Π ↔ a3Πu (Fox-Herzberg) band in C2,” Chem. Phys. Lett. 83, 441–448 (1981).
[CrossRef]

C. Naulin, M. Costes, G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d3Πg state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
[CrossRef]

Comput. J. (1)

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

J. Appl. Phys. (1)

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[CrossRef]

J. Mol. Spectrosc. (1)

R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

Phys. Rev. E (1)

Abilasha, P. S. R. Prasad, R. K. Thareja, “Laser-produced carbon plasma in an ambient gas,” Phys. Rev. E 48, 2929–2933 (1993).
[CrossRef]

Rev. Mod. Phys. (1)

J. H. Van Vleck, “The coupling of angular momentum vectors in molecules,” Rev. Mod. Phys. 23, 213–227 (1951).
[CrossRef]

Other (17)

I. Kovacs, Rotational Structure in The Spectra of Diatomic Molecules (American Elsevier, New York, 1969), p. 14.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 17, pp. 676–677.

S. L. Chin, “Laser beam transport,” in Laser Applications in Physical Chemistry, D. K. Evans, ed. (Marcel Dekker, New York, 1989), Chap. 2, pp. 39–62.

R. N. Compton, J. C. Miller, “Multiphoton ionization photoelectron spectroscopy: MPI-PES,” in Laser Applications in Physical Chemistry, D. K. Evans, ed. (Marcel Dekker, New York, 1989), Chap. 6, pp. 221–306.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart & Winston, New York, 1976), p. 304.

G. M. Weyl, “Physics of laser-induced breakdown: an update,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), Chap. 1, pp. 1–67.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964), Tables 4 and 5.

J. O. Hornkohl, C. G. Parigger, “Boltzmann Equilibrium Spectrum Program (BESP),” http.//view.utsi.edu/besp .

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Laser-induced breakdown spectroscopy: molecular spectra with BESP and NEQAIR,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 104–105.

B. R. Judd, Angular Momentum Theory for Diatomic Molecules (Academic, New York, 1975), pp. 4–5.

M. Mizushima, The Theory of Rotating Diatomic Molecules (Wiley, New York, 1975).

J. D. Graybeal, Molecular Spectroscopy (McGraw-Hill, New York, 1988), pp. 54–61.

H. Lefebvre-Brion, R. W. Field, Perturbations in the Spectra of Diatomic Molecules (Academic, Orlando, Fla., 1986), p. 98.

R. N. Zare, Angular Momentum (Wiley, New York, 1988).

H. W. Kroto, Molecular Rotation Spectra (Dover, New York, 1992), pp. 15–17.

P. R. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed. (NRC Research Press, Ottawa, Canada, 1998).

J. G. Phillips, S. P. Davis, The Swan System of the C2 Molecule (U. California Press, Berkeley, Calif., 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Top, recorded laser-induced breakdown spectra of the C2 Swan band Δν = +1, 0, -1 progression. Bottom, from the synthetic C2 Swan spectrum, a temperature T = 6400 is inferred. The spectroscopic resolution (FWHM) is 0.27 nm.

Fig. 2
Fig. 2

Photograph of the cell.

Fig. 3
Fig. 3

(a) Measured emission spectrum for an ambient He pressure of 20 Torr; the Nd:YAG third harmonic 355-nm was used for plasma generation. (b) Fitted Swan spectrum, showing temperature T = 4790 K.

Fig. 4
Fig. 4

(a) Measured emission spectrum for an ambient He pressure of 10 Torr; 1064-nm Nd:YAG laser radiation was used for plasma generation. (b) Fitted Swan spectrum, showing temperature T = 6920 K.

Fig. 5
Fig. 5

Lambda doubling in the C2 Swan spectra for three carbon isotopes.

Tables (2)

Tables Icon

Table 1 Carbon Plasma Experimental Data and Derived Parameters of Electron Kinetic Energy T kin , Electron Number Density N e , and Swan Band Vibration-Rotation temperature T

Tables Icon

Table 2 Section of the Line-Strength File for the d 3Π g a 3Π u (0, 0) Band

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I¯=64π4cν˜434πε0 SnvJ, nvJNnvJ.
SnvJ, nvJ=Senv, nv×qv, vSJ, J.

Metrics