Abstract

A laser-induced breakdown spectroscopy technique for analyzing biological matter for the detection of biological hazards is investigated. Eight species were considered in our experiment: six bacteria and two pollens in pellet form. The experimental setup is described, then a cumulative intensity ratio is proposed as a quantitative criterion because of its linearity and reproducibility. Time-resolved laser-induced breakdown spectroscopy (TRELIBS) exhibits a good ability to differentiate among all these species, whatever the culture medium, the species or the strain. Thus we expect that TRELIBS will be a good candidate for a sensor of hazards either on surfaces or in ambient air.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dudragne, Ph. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
    [CrossRef]
  2. L. Dudragne, S. Morel, P. Adam, J. Amouroux, “Analysis of polluted surfaces by time-resolved laser-induced breakdown spectroscopy.” Ann. N.Y. Acad. Sci. 891, 183–198 (1999).
    [CrossRef]
  3. L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasma and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–323.
  4. L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109–1113 (2002).
    [CrossRef]
  5. J. M. Alonso, J. Bejot, “Bacteries,” in Encyclopœdia Universalis (Encyclopædia Universalis S.A., Paris, 1996), pp. 719–735.
  6. R. V. Stanier, E. A. Adelberg, J. L. Ingraham, General Microbiology (Macmillan, London, 1999).
  7. F. C. Neidhardt, J. L. Ingraham, M. Schaechter, Physiologie de la Cellule bactérienne (Masson, Paris, 1994).
  8. L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).
  9. C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecules formation during laser ablation of graphite in low pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
    [CrossRef]
  10. C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” App. Spectrosc. 53, 1259–1267 (1999).
    [CrossRef]
  11. H. E. Bauer, F. Leis, K. Niemax, “LIBS with an echelle spectrometer and intensified CCD detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
    [CrossRef]
  12. P. Lindblom, “New compact echelle spectrograph with multichannel time recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
    [CrossRef]
  13. V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
    [CrossRef]
  14. L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
    [CrossRef]

2002 (2)

L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109–1113 (2002).
[CrossRef]

L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

2001 (1)

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

1999 (4)

P. Lindblom, “New compact echelle spectrograph with multichannel time recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
[CrossRef]

C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” App. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

L. Dudragne, S. Morel, P. Adam, J. Amouroux, “Analysis of polluted surfaces by time-resolved laser-induced breakdown spectroscopy.” Ann. N.Y. Acad. Sci. 891, 183–198 (1999).
[CrossRef]

1998 (3)

L. Dudragne, Ph. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
[CrossRef]

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecules formation during laser ablation of graphite in low pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

H. E. Bauer, F. Leis, K. Niemax, “LIBS with an echelle spectrometer and intensified CCD detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

Adam, P.

L. Dudragne, S. Morel, P. Adam, J. Amouroux, “Analysis of polluted surfaces by time-resolved laser-induced breakdown spectroscopy.” Ann. N.Y. Acad. Sci. 891, 183–198 (1999).
[CrossRef]

Adam, Ph.

Adelberg, E. A.

R. V. Stanier, E. A. Adelberg, J. L. Ingraham, General Microbiology (Macmillan, London, 1999).

Aguilera, J. A.

C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” App. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

Alonso, J. M.

J. M. Alonso, J. Bejot, “Bacteries,” in Encyclopœdia Universalis (Encyclopædia Universalis S.A., Paris, 1996), pp. 719–735.

Amouroux, J.

L. Dudragne, S. Morel, P. Adam, J. Amouroux, “Analysis of polluted surfaces by time-resolved laser-induced breakdown spectroscopy.” Ann. N.Y. Acad. Sci. 891, 183–198 (1999).
[CrossRef]

L. Dudragne, Ph. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
[CrossRef]

Aragón, C.

C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” App. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

Bauer, H. E.

H. E. Bauer, F. Leis, K. Niemax, “LIBS with an echelle spectrometer and intensified CCD detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

Béchard, S.

L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Bejot, J.

J. M. Alonso, J. Bejot, “Bacteries,” in Encyclopœdia Universalis (Encyclopædia Universalis S.A., Paris, 1996), pp. 719–735.

Boulmer-Leborgne, C.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecules formation during laser ablation of graphite in low pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

Cremers, D. A.

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasma and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–323.

Detalle, V.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Dudragne, L.

L. Dudragne, S. Morel, P. Adam, J. Amouroux, “Analysis of polluted surfaces by time-resolved laser-induced breakdown spectroscopy.” Ann. N.Y. Acad. Sci. 891, 183–198 (1999).
[CrossRef]

L. Dudragne, Ph. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
[CrossRef]

Héon, R.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Hermann, J.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecules formation during laser ablation of graphite in low pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

Ingraham, J. L.

R. V. Stanier, E. A. Adelberg, J. L. Ingraham, General Microbiology (Macmillan, London, 1999).

F. C. Neidhardt, J. L. Ingraham, M. Schaechter, Physiologie de la Cellule bactérienne (Masson, Paris, 1994).

Kwong, E.

L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

Leis, F.

H. E. Bauer, F. Leis, K. Niemax, “LIBS with an echelle spectrometer and intensified CCD detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

Lindblom, P.

P. Lindblom, “New compact echelle spectrograph with multichannel time recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
[CrossRef]

Luches, A.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecules formation during laser ablation of graphite in low pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

Morel, S.

L. Dudragne, S. Morel, P. Adam, J. Amouroux, “Analysis of polluted surfaces by time-resolved laser-induced breakdown spectroscopy.” Ann. N.Y. Acad. Sci. 891, 183–198 (1999).
[CrossRef]

Neidhardt, F. C.

F. C. Neidhardt, J. L. Ingraham, M. Schaechter, Physiologie de la Cellule bactérienne (Masson, Paris, 1994).

Niemax, K.

H. E. Bauer, F. Leis, K. Niemax, “LIBS with an echelle spectrometer and intensified CCD detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

Peñalba, F.

C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” App. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

Perrone, A.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecules formation during laser ablation of graphite in low pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

Radziemski, L. J.

L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109–1113 (2002).
[CrossRef]

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasma and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–323.

Sabsabi, M.

L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Schaechter, M.

F. C. Neidhardt, J. L. Ingraham, M. Schaechter, Physiologie de la Cellule bactérienne (Masson, Paris, 1994).

Sing, R.

L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Stanier, R. V.

R. V. Stanier, E. A. Adelberg, J. L. Ingraham, General Microbiology (Macmillan, London, 1999).

St-Onge, L.

L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Vadas, E. B.

L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

Vivien, C.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecules formation during laser ablation of graphite in low pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

Anal. Chim. Acta (1)

P. Lindblom, “New compact echelle spectrograph with multichannel time recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
[CrossRef]

Ann. N.Y. Acad. Sci. (1)

L. Dudragne, S. Morel, P. Adam, J. Amouroux, “Analysis of polluted surfaces by time-resolved laser-induced breakdown spectroscopy.” Ann. N.Y. Acad. Sci. 891, 183–198 (1999).
[CrossRef]

App. Spectrosc. (1)

C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” App. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

Appl. Phys. A (1)

L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Appl. Spectrosc. (1)

J. Phys. D (1)

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecules formation during laser ablation of graphite in low pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

Spectrochim. Acta Part B (4)

L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109–1113 (2002).
[CrossRef]

H. E. Bauer, F. Leis, K. Niemax, “LIBS with an echelle spectrometer and intensified CCD detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

Other (4)

J. M. Alonso, J. Bejot, “Bacteries,” in Encyclopœdia Universalis (Encyclopædia Universalis S.A., Paris, 1996), pp. 719–735.

R. V. Stanier, E. A. Adelberg, J. L. Ingraham, General Microbiology (Macmillan, London, 1999).

F. C. Neidhardt, J. L. Ingraham, M. Schaechter, Physiologie de la Cellule bactérienne (Masson, Paris, 1994).

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasma and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–323.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Basic bacterial structure.

Fig. 2
Fig. 2

Schematic of the TRELIBS apparatus. Temporal parameters: delay before acquisition, 1 µs; width for acquisition, 20 µs.

Fig. 3
Fig. 3

Spectra of Bacillus globigii BG-1 obtained by combination of several 40 nm segments to provide a single, extended wavelength range (no interesting spectral data from 845 to 928 nm). Each measured spectrum is the average of two series of five accumulated laser shots for each window.

Fig. 4
Fig. 4

Molecular structures of the compounds used as either C—N bonds or C2 (C—C and C=C) bond sources.

Fig. 5
Fig. 5

CN bands obtained after firing of several kinds of organic pellet: (1) CN 386.170 nm, (2) CN 387.140 nm, (3) CN 388.340 nm, (4) Ca 393.366 nm, (5) Ca 396,847 nm. For each sample an average of 5 series of 10 cumulative shots in the same pellet location is represented. TRELIBS parameter: pulse energy, 100 mJ; temporal parameters: delay before acquisition, 1 µs; width, 20 µs.

Fig. 6
Fig. 6

Average and standard deviation of 5 series of differences in intensities of CN bands at 387.140 nm (I 1) and 386.170 nm (I 2) that have been accumulated for 10 shots at the same pellet location.

Fig. 7
Fig. 7

Reproducibility of CIR Mg/CN on a pellet of BG-1 at various locations in the pellet.

Fig. 8
Fig. 8

Spectra of CIRs of two pellets of BG-1 made 1 year apart: (BG-1a and BG-1b). (a) lines P (253.560 nm)/C (247.856 nm); (b) lines P (253.560 nm)/Mg (285.213 nm); (c) lines C (247.856 nm)/Mg (285.213). SD, standard deviation.

Fig. 9
Fig. 9

Spectra of CIRs of (a) lines P(253.560nm)/C(247.856nm) and (b) lines Mg(285.213 nm)/C(247.856nm). The sample of interest is BG-1.

Fig. 10
Fig. 10

Comparison of CIRs of P (253.560 nm) and C (247.856 nm) for several bacteria, two of which are strains of Bacillus globigii: BG-1, BG-2. TRELIBS parameter: pulse energy, 100 mJ; delay, 1 µs; width, 20 µs. CIRs for two kinds of pollen are also shown.

Tables (2)

Tables Icon

Table 1 Biological Agents and Related Pathogenic Agents Used in This Study

Tables Icon

Table 2 Reproducibility of the CIR on a Same Pellet but with Different Compounds

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C2+N22CN.
CIR=i=110Ia/Ibi.

Metrics