Abstract

The technique of laser-induced breakdown spectroscopy has been used for the first time to our knowledge for the identification of metals such as palladium and silver that were dispersed in bacterial cellulose membranes. These results for palladium-dispersed films have been correlated to a calibration curve obtained by use of atomic absorption spectroscopy and were found to be in good agreement. The experiments were conducted by use of wet and dry metal-doped membranes. The metal peaks obtained with a dry membrane are greater than five times higher in signal-to-background ratio than when metals are detected by a hydrated membrane. The advantage of this laser-based technique is that minimal sample handling and sample preparation are needed and measurements are completed in real time (a few seconds). Hence this technique can be used for the detection of metals in dry membranes that would be used in the construction of electrode assemblies.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Cannon, S. M. Anderson, “Biogenesis of bacterial cellulose,” Crit. Rev. Microbiol. 17(6), 435–447 (1991).
    [CrossRef]
  2. T. Heinze, “New ionic polymers by cellulose functionalization,” Macromol. Chem. Phys. 199, 2341–2364 (1998).
    [CrossRef]
  3. H. P. T. Ammon, W. Ege, M. Oppermann, W. Goepel, S. Eisele, “Improvement in the long-term stability of an amperometric glucose sensor system by introducing a cellulose membrane of bacterial origin,” Anal. Chem. 67, 466–471 (1995).
    [CrossRef] [PubMed]
  4. G. Franz, W. Blaschek, “Cellulose” in Methods in Plant Biochemistry, Vol. 2 of Methods in Plant Biochemistry Series, P. M. Ray, J. B. Harborne, eds. (Academic, London, 1990), pp. 291–322.
    [CrossRef]
  5. B. R. Evans, N. M. O’Neill, J. Woodward, “Gluconoacetobacter cellulose membranes for biofuel cells,” Electrochim. Acta: Proceedings of the ARO-DARPA Workshop on Biofuel Cells 30 June–2 July 2002, submitted for publication.
  6. B. R. Evans, H. M. O’Neill, V. P. Malyvanh, I. Lee, J. Woodward, “Palladium-bacterial cellulose membranes for fuel cells,” Biosens. Bioelectron. 18(7), 917–923 (2003).
    [CrossRef]
  7. B. R. Evans, H. M. O’Neill, V. P. Malyvanh, J. Woodward, “Metallization of bacterial cellulose for electrical and electronic device manufacture,” application 20030113610, patent pending.
  8. M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
    [CrossRef]
  9. M. Z. Martin, S. Wullschleger, A. Palumbo, O. West, J. Smith, B. Evans, H. O’Neill, J. Woodward, “Applications of laser-induced breakdown spectroscopy to environmental and biological sample analysis,” in Proceedings of the Pittsburgh Conference & Exposition on Analytical Chemistry & Applied Spectroscopy Pittcon 2003 (Spectroscopy Society of Pittsburgh, Pittsburgh, Pa., 2003).
  10. D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
    [CrossRef]
  11. M. Z. Martin, M. D. Cheng, “Detection of chromium aerosol using time-resolved laser-induced plasma spectroscopy,” Appl. Spectrosc. 54, 1279–1285 (2000).
    [CrossRef]
  12. A. J. Stewart, M. Z. Martin, K. D. Gwinn, J. C. Waller, “Test for effect of endophyte infection status on metal uptake by tall fescue (Festuca arundinacea),” Int. J. Phytoremediation, submitted for publication.
  13. Y. Yamada, K. Hoshino, T. Ishikawa, “The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level,” Biosci. Biotechnol. Biochem. 61, 1244–1251 (1997).
    [CrossRef] [PubMed]
  14. S. Hestrin, M. Schramm, “Synthesis of cellulose by Acetobacter xylinum: preparation of freeze-dried cells capable of polymerizing glucose to cellulose,” Biochem. J. 58, 345–352 (1954).
    [PubMed]
  15. A. N. Shipway, E. Katz, I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1, 18–52 (2000).
    [CrossRef] [PubMed]
  16. W. H. Brown, Organic Chemistry (Saunders, Philadelphia, Pa., 1995), p. 740.

2003

B. R. Evans, H. M. O’Neill, V. P. Malyvanh, I. Lee, J. Woodward, “Palladium-bacterial cellulose membranes for fuel cells,” Biosens. Bioelectron. 18(7), 917–923 (2003).
[CrossRef]

2001

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

2000

A. N. Shipway, E. Katz, I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1, 18–52 (2000).
[CrossRef] [PubMed]

M. Z. Martin, M. D. Cheng, “Detection of chromium aerosol using time-resolved laser-induced plasma spectroscopy,” Appl. Spectrosc. 54, 1279–1285 (2000).
[CrossRef]

1999

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

1998

T. Heinze, “New ionic polymers by cellulose functionalization,” Macromol. Chem. Phys. 199, 2341–2364 (1998).
[CrossRef]

1997

Y. Yamada, K. Hoshino, T. Ishikawa, “The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level,” Biosci. Biotechnol. Biochem. 61, 1244–1251 (1997).
[CrossRef] [PubMed]

1995

H. P. T. Ammon, W. Ege, M. Oppermann, W. Goepel, S. Eisele, “Improvement in the long-term stability of an amperometric glucose sensor system by introducing a cellulose membrane of bacterial origin,” Anal. Chem. 67, 466–471 (1995).
[CrossRef] [PubMed]

1991

R. E. Cannon, S. M. Anderson, “Biogenesis of bacterial cellulose,” Crit. Rev. Microbiol. 17(6), 435–447 (1991).
[CrossRef]

1954

S. Hestrin, M. Schramm, “Synthesis of cellulose by Acetobacter xylinum: preparation of freeze-dried cells capable of polymerizing glucose to cellulose,” Biochem. J. 58, 345–352 (1954).
[PubMed]

Ammon, H. P. T.

H. P. T. Ammon, W. Ege, M. Oppermann, W. Goepel, S. Eisele, “Improvement in the long-term stability of an amperometric glucose sensor system by introducing a cellulose membrane of bacterial origin,” Anal. Chem. 67, 466–471 (1995).
[CrossRef] [PubMed]

Anderson, S. M.

R. E. Cannon, S. M. Anderson, “Biogenesis of bacterial cellulose,” Crit. Rev. Microbiol. 17(6), 435–447 (1991).
[CrossRef]

Blaschek, W.

G. Franz, W. Blaschek, “Cellulose” in Methods in Plant Biochemistry, Vol. 2 of Methods in Plant Biochemistry Series, P. M. Ray, J. B. Harborne, eds. (Academic, London, 1990), pp. 291–322.
[CrossRef]

Breshears, D. D.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Brown, J. R.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Brown, W. H.

W. H. Brown, Organic Chemistry (Saunders, Philadelphia, Pa., 1995), p. 740.

Cannon, R. E.

R. E. Cannon, S. M. Anderson, “Biogenesis of bacterial cellulose,” Crit. Rev. Microbiol. 17(6), 435–447 (1991).
[CrossRef]

Catlett, K. M.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Cheng, M. D.

M. Z. Martin, M. D. Cheng, “Detection of chromium aerosol using time-resolved laser-induced plasma spectroscopy,” Appl. Spectrosc. 54, 1279–1285 (2000).
[CrossRef]

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

Cremers, D. A.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Ebinger, M. H.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Ege, W.

H. P. T. Ammon, W. Ege, M. Oppermann, W. Goepel, S. Eisele, “Improvement in the long-term stability of an amperometric glucose sensor system by introducing a cellulose membrane of bacterial origin,” Anal. Chem. 67, 466–471 (1995).
[CrossRef] [PubMed]

Eisele, S.

H. P. T. Ammon, W. Ege, M. Oppermann, W. Goepel, S. Eisele, “Improvement in the long-term stability of an amperometric glucose sensor system by introducing a cellulose membrane of bacterial origin,” Anal. Chem. 67, 466–471 (1995).
[CrossRef] [PubMed]

Evans, B.

M. Z. Martin, S. Wullschleger, A. Palumbo, O. West, J. Smith, B. Evans, H. O’Neill, J. Woodward, “Applications of laser-induced breakdown spectroscopy to environmental and biological sample analysis,” in Proceedings of the Pittsburgh Conference & Exposition on Analytical Chemistry & Applied Spectroscopy Pittcon 2003 (Spectroscopy Society of Pittsburgh, Pittsburgh, Pa., 2003).

Evans, B. R.

B. R. Evans, H. M. O’Neill, V. P. Malyvanh, I. Lee, J. Woodward, “Palladium-bacterial cellulose membranes for fuel cells,” Biosens. Bioelectron. 18(7), 917–923 (2003).
[CrossRef]

B. R. Evans, H. M. O’Neill, V. P. Malyvanh, J. Woodward, “Metallization of bacterial cellulose for electrical and electronic device manufacture,” application 20030113610, patent pending.

B. R. Evans, N. M. O’Neill, J. Woodward, “Gluconoacetobacter cellulose membranes for biofuel cells,” Electrochim. Acta: Proceedings of the ARO-DARPA Workshop on Biofuel Cells 30 June–2 July 2002, submitted for publication.

Ferris, M. J.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Franz, G.

G. Franz, W. Blaschek, “Cellulose” in Methods in Plant Biochemistry, Vol. 2 of Methods in Plant Biochemistry Series, P. M. Ray, J. B. Harborne, eds. (Academic, London, 1990), pp. 291–322.
[CrossRef]

Goepel, W.

H. P. T. Ammon, W. Ege, M. Oppermann, W. Goepel, S. Eisele, “Improvement in the long-term stability of an amperometric glucose sensor system by introducing a cellulose membrane of bacterial origin,” Anal. Chem. 67, 466–471 (1995).
[CrossRef] [PubMed]

Gwinn, K. D.

A. J. Stewart, M. Z. Martin, K. D. Gwinn, J. C. Waller, “Test for effect of endophyte infection status on metal uptake by tall fescue (Festuca arundinacea),” Int. J. Phytoremediation, submitted for publication.

Heinze, T.

T. Heinze, “New ionic polymers by cellulose functionalization,” Macromol. Chem. Phys. 199, 2341–2364 (1998).
[CrossRef]

Hestrin, S.

S. Hestrin, M. Schramm, “Synthesis of cellulose by Acetobacter xylinum: preparation of freeze-dried cells capable of polymerizing glucose to cellulose,” Biochem. J. 58, 345–352 (1954).
[PubMed]

Hoshino, K.

Y. Yamada, K. Hoshino, T. Ishikawa, “The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level,” Biosci. Biotechnol. Biochem. 61, 1244–1251 (1997).
[CrossRef] [PubMed]

Ishikawa, T.

Y. Yamada, K. Hoshino, T. Ishikawa, “The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level,” Biosci. Biotechnol. Biochem. 61, 1244–1251 (1997).
[CrossRef] [PubMed]

Kammerdiener, S. A.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Katz, E.

A. N. Shipway, E. Katz, I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1, 18–52 (2000).
[CrossRef] [PubMed]

Lee, I.

B. R. Evans, H. M. O’Neill, V. P. Malyvanh, I. Lee, J. Woodward, “Palladium-bacterial cellulose membranes for fuel cells,” Biosens. Bioelectron. 18(7), 917–923 (2003).
[CrossRef]

Malyvanh, V. P.

B. R. Evans, H. M. O’Neill, V. P. Malyvanh, I. Lee, J. Woodward, “Palladium-bacterial cellulose membranes for fuel cells,” Biosens. Bioelectron. 18(7), 917–923 (2003).
[CrossRef]

B. R. Evans, H. M. O’Neill, V. P. Malyvanh, J. Woodward, “Metallization of bacterial cellulose for electrical and electronic device manufacture,” application 20030113610, patent pending.

Martin, M. Z.

M. Z. Martin, M. D. Cheng, “Detection of chromium aerosol using time-resolved laser-induced plasma spectroscopy,” Appl. Spectrosc. 54, 1279–1285 (2000).
[CrossRef]

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

M. Z. Martin, S. Wullschleger, A. Palumbo, O. West, J. Smith, B. Evans, H. O’Neill, J. Woodward, “Applications of laser-induced breakdown spectroscopy to environmental and biological sample analysis,” in Proceedings of the Pittsburgh Conference & Exposition on Analytical Chemistry & Applied Spectroscopy Pittcon 2003 (Spectroscopy Society of Pittsburgh, Pittsburgh, Pa., 2003).

A. J. Stewart, M. Z. Martin, K. D. Gwinn, J. C. Waller, “Test for effect of endophyte infection status on metal uptake by tall fescue (Festuca arundinacea),” Int. J. Phytoremediation, submitted for publication.

Martin, R. C.

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

O’Neill, H.

M. Z. Martin, S. Wullschleger, A. Palumbo, O. West, J. Smith, B. Evans, H. O’Neill, J. Woodward, “Applications of laser-induced breakdown spectroscopy to environmental and biological sample analysis,” in Proceedings of the Pittsburgh Conference & Exposition on Analytical Chemistry & Applied Spectroscopy Pittcon 2003 (Spectroscopy Society of Pittsburgh, Pittsburgh, Pa., 2003).

O’Neill, H. M.

B. R. Evans, H. M. O’Neill, V. P. Malyvanh, I. Lee, J. Woodward, “Palladium-bacterial cellulose membranes for fuel cells,” Biosens. Bioelectron. 18(7), 917–923 (2003).
[CrossRef]

B. R. Evans, H. M. O’Neill, V. P. Malyvanh, J. Woodward, “Metallization of bacterial cellulose for electrical and electronic device manufacture,” application 20030113610, patent pending.

O’Neill, N. M.

B. R. Evans, N. M. O’Neill, J. Woodward, “Gluconoacetobacter cellulose membranes for biofuel cells,” Electrochim. Acta: Proceedings of the ARO-DARPA Workshop on Biofuel Cells 30 June–2 July 2002, submitted for publication.

Oppermann, M.

H. P. T. Ammon, W. Ege, M. Oppermann, W. Goepel, S. Eisele, “Improvement in the long-term stability of an amperometric glucose sensor system by introducing a cellulose membrane of bacterial origin,” Anal. Chem. 67, 466–471 (1995).
[CrossRef] [PubMed]

Palumbo, A.

M. Z. Martin, S. Wullschleger, A. Palumbo, O. West, J. Smith, B. Evans, H. O’Neill, J. Woodward, “Applications of laser-induced breakdown spectroscopy to environmental and biological sample analysis,” in Proceedings of the Pittsburgh Conference & Exposition on Analytical Chemistry & Applied Spectroscopy Pittcon 2003 (Spectroscopy Society of Pittsburgh, Pittsburgh, Pa., 2003).

Schramm, M.

S. Hestrin, M. Schramm, “Synthesis of cellulose by Acetobacter xylinum: preparation of freeze-dried cells capable of polymerizing glucose to cellulose,” Biochem. J. 58, 345–352 (1954).
[PubMed]

Shipway, A. N.

A. N. Shipway, E. Katz, I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1, 18–52 (2000).
[CrossRef] [PubMed]

Smith, J.

M. Z. Martin, S. Wullschleger, A. Palumbo, O. West, J. Smith, B. Evans, H. O’Neill, J. Woodward, “Applications of laser-induced breakdown spectroscopy to environmental and biological sample analysis,” in Proceedings of the Pittsburgh Conference & Exposition on Analytical Chemistry & Applied Spectroscopy Pittcon 2003 (Spectroscopy Society of Pittsburgh, Pittsburgh, Pa., 2003).

Stewart, A. J.

A. J. Stewart, M. Z. Martin, K. D. Gwinn, J. C. Waller, “Test for effect of endophyte infection status on metal uptake by tall fescue (Festuca arundinacea),” Int. J. Phytoremediation, submitted for publication.

Unkefer, P. J.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Waller, J. C.

A. J. Stewart, M. Z. Martin, K. D. Gwinn, J. C. Waller, “Test for effect of endophyte infection status on metal uptake by tall fescue (Festuca arundinacea),” Int. J. Phytoremediation, submitted for publication.

West, O.

M. Z. Martin, S. Wullschleger, A. Palumbo, O. West, J. Smith, B. Evans, H. O’Neill, J. Woodward, “Applications of laser-induced breakdown spectroscopy to environmental and biological sample analysis,” in Proceedings of the Pittsburgh Conference & Exposition on Analytical Chemistry & Applied Spectroscopy Pittcon 2003 (Spectroscopy Society of Pittsburgh, Pittsburgh, Pa., 2003).

Willner, I.

A. N. Shipway, E. Katz, I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1, 18–52 (2000).
[CrossRef] [PubMed]

Woodward, J.

B. R. Evans, H. M. O’Neill, V. P. Malyvanh, I. Lee, J. Woodward, “Palladium-bacterial cellulose membranes for fuel cells,” Biosens. Bioelectron. 18(7), 917–923 (2003).
[CrossRef]

M. Z. Martin, S. Wullschleger, A. Palumbo, O. West, J. Smith, B. Evans, H. O’Neill, J. Woodward, “Applications of laser-induced breakdown spectroscopy to environmental and biological sample analysis,” in Proceedings of the Pittsburgh Conference & Exposition on Analytical Chemistry & Applied Spectroscopy Pittcon 2003 (Spectroscopy Society of Pittsburgh, Pittsburgh, Pa., 2003).

B. R. Evans, N. M. O’Neill, J. Woodward, “Gluconoacetobacter cellulose membranes for biofuel cells,” Electrochim. Acta: Proceedings of the ARO-DARPA Workshop on Biofuel Cells 30 June–2 July 2002, submitted for publication.

B. R. Evans, H. M. O’Neill, V. P. Malyvanh, J. Woodward, “Metallization of bacterial cellulose for electrical and electronic device manufacture,” application 20030113610, patent pending.

Wullschleger, S.

M. Z. Martin, S. Wullschleger, A. Palumbo, O. West, J. Smith, B. Evans, H. O’Neill, J. Woodward, “Applications of laser-induced breakdown spectroscopy to environmental and biological sample analysis,” in Proceedings of the Pittsburgh Conference & Exposition on Analytical Chemistry & Applied Spectroscopy Pittcon 2003 (Spectroscopy Society of Pittsburgh, Pittsburgh, Pa., 2003).

Yamada, Y.

Y. Yamada, K. Hoshino, T. Ishikawa, “The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level,” Biosci. Biotechnol. Biochem. 61, 1244–1251 (1997).
[CrossRef] [PubMed]

Aerosol Sci. Technol.

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

Anal. Chem.

H. P. T. Ammon, W. Ege, M. Oppermann, W. Goepel, S. Eisele, “Improvement in the long-term stability of an amperometric glucose sensor system by introducing a cellulose membrane of bacterial origin,” Anal. Chem. 67, 466–471 (1995).
[CrossRef] [PubMed]

Appl. Spectrosc.

Biochem. J.

S. Hestrin, M. Schramm, “Synthesis of cellulose by Acetobacter xylinum: preparation of freeze-dried cells capable of polymerizing glucose to cellulose,” Biochem. J. 58, 345–352 (1954).
[PubMed]

Biosci. Biotechnol. Biochem.

Y. Yamada, K. Hoshino, T. Ishikawa, “The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level,” Biosci. Biotechnol. Biochem. 61, 1244–1251 (1997).
[CrossRef] [PubMed]

Biosens. Bioelectron.

B. R. Evans, H. M. O’Neill, V. P. Malyvanh, I. Lee, J. Woodward, “Palladium-bacterial cellulose membranes for fuel cells,” Biosens. Bioelectron. 18(7), 917–923 (2003).
[CrossRef]

ChemPhysChem

A. N. Shipway, E. Katz, I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1, 18–52 (2000).
[CrossRef] [PubMed]

Crit. Rev. Microbiol.

R. E. Cannon, S. M. Anderson, “Biogenesis of bacterial cellulose,” Crit. Rev. Microbiol. 17(6), 435–447 (1991).
[CrossRef]

J. Environ. Qual.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Macromol. Chem. Phys.

T. Heinze, “New ionic polymers by cellulose functionalization,” Macromol. Chem. Phys. 199, 2341–2364 (1998).
[CrossRef]

Other

G. Franz, W. Blaschek, “Cellulose” in Methods in Plant Biochemistry, Vol. 2 of Methods in Plant Biochemistry Series, P. M. Ray, J. B. Harborne, eds. (Academic, London, 1990), pp. 291–322.
[CrossRef]

B. R. Evans, N. M. O’Neill, J. Woodward, “Gluconoacetobacter cellulose membranes for biofuel cells,” Electrochim. Acta: Proceedings of the ARO-DARPA Workshop on Biofuel Cells 30 June–2 July 2002, submitted for publication.

B. R. Evans, H. M. O’Neill, V. P. Malyvanh, J. Woodward, “Metallization of bacterial cellulose for electrical and electronic device manufacture,” application 20030113610, patent pending.

M. Z. Martin, S. Wullschleger, A. Palumbo, O. West, J. Smith, B. Evans, H. O’Neill, J. Woodward, “Applications of laser-induced breakdown spectroscopy to environmental and biological sample analysis,” in Proceedings of the Pittsburgh Conference & Exposition on Analytical Chemistry & Applied Spectroscopy Pittcon 2003 (Spectroscopy Society of Pittsburgh, Pittsburgh, Pa., 2003).

A. J. Stewart, M. Z. Martin, K. D. Gwinn, J. C. Waller, “Test for effect of endophyte infection status on metal uptake by tall fescue (Festuca arundinacea),” Int. J. Phytoremediation, submitted for publication.

W. H. Brown, Organic Chemistry (Saunders, Philadelphia, Pa., 1995), p. 740.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Deposition of palladium from (NH4)2PdCl6 (10 mM) by glucose at zero, onefold, twofold, fivefold, and tenfold molar excess.

Fig. 2
Fig. 2

LIBS spectrum for (a) wet palladium-doped cellulose membrane and (b) dry palladium-doped cellulose membrane.

Fig. 5
Fig. 5

Image of a dry silver-doped membrane showing laser holes where the LIBS sampling was initiated.

Fig. 3
Fig. 3

Image of dry palladium-doped membrane showing laser holes where the LIBS sampling was initiated.

Fig. 4
Fig. 4

LIBS signal versus concentration of palladium in solution used to deposit palladium into the cellulose film. Inset is the atomic absorption data for the same bacterial cellulose membranes that were tested with LIBS.

Fig. 6
Fig. 6

LIBS spectrum for dry silver-doped cellulose membrane.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C6H12O6+H2OC6H12O7+2H++2e-  +0.45 V,PdCl62-+2e-PdCl42-+2Cl-      +1.29 V,PdCl42-+2e-Pd+4Cl-        +0.62 V.

Metrics