Abstract

Laser-induced breakdown spectroscopy (LIBS) has been used to determine whether the hands of a suspected gun user contain traces of gunshot residue. Samples are obtained by pressing adhesive tape against the skin of the suspect and analyzing the tape directly. When the suspect has fired multiple shots, or if the gun has not been cleaned, the gunshot residue provides a spectral signature that is readily apparent, but a person who has fired a single shot from a clean gun is not so easy to identify. The error rates associated with the LIBS identification of a subject who fired one shot from a clean gun have been evaluated by Monte Carlo simulation techniques, and criteria are proposed for defining a positive or a negative test result.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Romolo, P. Margot, “Identification of gunshot residue: a critical review,” Forensic Sci. Int. 119, 195–211 (2001).
    [CrossRef]
  2. H. C. Harrison, R. Gilroy, “Firearms discharge residues,” J. Forensic Sci. 4, 184–199 (1959).
  3. A. J. Schwoeble, D. L. Exline, Current Methods in Forensic Gunshot Residue Analysis (CRC Press, Boca Raton, Fla., 2000).
  4. R. S. Nesbitt, J. E. Wessel, P. F. Jones, “Detection of gunshot residue by use of the scanning electron microscope,” J. Forensic Sci. 21, 595–610 (1976).
    [PubMed]
  5. L. Garofano, M. Capra, F. Ferrari, G. P. Bizzaro, D. Di Tullio, M. Dell’Olio, A. Ghitti, “Gunshot residue. Further studies on particles of environmental and occupational origin,” Forensic Sci. Int. 103, 1–21 (1999).
    [CrossRef]
  6. R. J. Kopec, “The application of prefiltration to the analysis of acid-degraded gunshot residue swabs,” J. Forensic Sci. 24, 92–95 (1979).
  7. J. T. Newton, “Rapid determination of antimony, barium, and lead in gunshot residue via automated atomic absorption spectrophotometry,” J. Forensic Sci. 26, 302–312 (1981).
  8. R. C. McFarland, M. E. McLain, “Rapid neutron activation analysis for gunshot residue determination,” J. Forensic Sci. 18, 226–231 (1973).
    [PubMed]
  9. C. Brihaye, R. Machiroux, G. Gillain, “Gunpowder residues detection by anodic stripping voltammetry,” Forensic Sci. Int. 20, 269–276 (1982).
    [CrossRef]
  10. R. D. Koons, D. G. Havekost, C. A. Peters, “Determination of barium in gunshot residue collection swabs using inductively coupled plasma-atomic emission spectrometry,” J. Forensic Sci. 33, 35–41 (1988).
  11. J. S. Wallace, J. McQuillan, “Discharge residues from cartridge-operated industrial tools,” J. Forensic Sci. Soc. 24, 495–508 (1984).
    [CrossRef]
  12. G. M. Wolten, R. S. Nesbitt, A. R. Calloway, G. L. Loper, “Particle analysis for the determination of gunshot residue. II. Occupational and environmental particles,” J. Forensic Sci. 24, 423–430 (1979).
  13. P. V. Mosher, M. J. McVicar, E. D. Randall, E. H. Sild, “Gunshot residue-similar particles produced by fireworks,” Can. Soc. Forensic Sci. J. 31, 157–168 (1998).
  14. Y. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000).
  15. A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, A. C. Koskelo, “Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50, 1175–1181 (1996).
    [CrossRef]
  16. S. R. Goode, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
    [CrossRef]
  17. N. E. Schmidt, S. R. Goode, “Analysis of aqueous solutions by laser-induced breakdown spectroscopy of ion exchange membranes,” Appl. Spectrosc. 56, 370–374 (2002).
    [CrossRef]
  18. Federal court case, Daubert v. Merrell Dow Pharmaceuticals, 509 U.S. 579 (1993).

2002 (1)

2001 (1)

F. S. Romolo, P. Margot, “Identification of gunshot residue: a critical review,” Forensic Sci. Int. 119, 195–211 (2001).
[CrossRef]

2000 (1)

S. R. Goode, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
[CrossRef]

1999 (1)

L. Garofano, M. Capra, F. Ferrari, G. P. Bizzaro, D. Di Tullio, M. Dell’Olio, A. Ghitti, “Gunshot residue. Further studies on particles of environmental and occupational origin,” Forensic Sci. Int. 103, 1–21 (1999).
[CrossRef]

1998 (1)

P. V. Mosher, M. J. McVicar, E. D. Randall, E. H. Sild, “Gunshot residue-similar particles produced by fireworks,” Can. Soc. Forensic Sci. J. 31, 157–168 (1998).

1996 (1)

1988 (1)

R. D. Koons, D. G. Havekost, C. A. Peters, “Determination of barium in gunshot residue collection swabs using inductively coupled plasma-atomic emission spectrometry,” J. Forensic Sci. 33, 35–41 (1988).

1984 (1)

J. S. Wallace, J. McQuillan, “Discharge residues from cartridge-operated industrial tools,” J. Forensic Sci. Soc. 24, 495–508 (1984).
[CrossRef]

1982 (1)

C. Brihaye, R. Machiroux, G. Gillain, “Gunpowder residues detection by anodic stripping voltammetry,” Forensic Sci. Int. 20, 269–276 (1982).
[CrossRef]

1981 (1)

J. T. Newton, “Rapid determination of antimony, barium, and lead in gunshot residue via automated atomic absorption spectrophotometry,” J. Forensic Sci. 26, 302–312 (1981).

1979 (2)

R. J. Kopec, “The application of prefiltration to the analysis of acid-degraded gunshot residue swabs,” J. Forensic Sci. 24, 92–95 (1979).

G. M. Wolten, R. S. Nesbitt, A. R. Calloway, G. L. Loper, “Particle analysis for the determination of gunshot residue. II. Occupational and environmental particles,” J. Forensic Sci. 24, 423–430 (1979).

1976 (1)

R. S. Nesbitt, J. E. Wessel, P. F. Jones, “Detection of gunshot residue by use of the scanning electron microscope,” J. Forensic Sci. 21, 595–610 (1976).
[PubMed]

1973 (1)

R. C. McFarland, M. E. McLain, “Rapid neutron activation analysis for gunshot residue determination,” J. Forensic Sci. 18, 226–231 (1973).
[PubMed]

1959 (1)

H. C. Harrison, R. Gilroy, “Firearms discharge residues,” J. Forensic Sci. 4, 184–199 (1959).

Bizzaro, G. P.

L. Garofano, M. Capra, F. Ferrari, G. P. Bizzaro, D. Di Tullio, M. Dell’Olio, A. Ghitti, “Gunshot residue. Further studies on particles of environmental and occupational origin,” Forensic Sci. Int. 103, 1–21 (1999).
[CrossRef]

Brihaye, C.

C. Brihaye, R. Machiroux, G. Gillain, “Gunpowder residues detection by anodic stripping voltammetry,” Forensic Sci. Int. 20, 269–276 (1982).
[CrossRef]

Calloway, A. R.

G. M. Wolten, R. S. Nesbitt, A. R. Calloway, G. L. Loper, “Particle analysis for the determination of gunshot residue. II. Occupational and environmental particles,” J. Forensic Sci. 24, 423–430 (1979).

Capra, M.

L. Garofano, M. Capra, F. Ferrari, G. P. Bizzaro, D. Di Tullio, M. Dell’Olio, A. Ghitti, “Gunshot residue. Further studies on particles of environmental and occupational origin,” Forensic Sci. Int. 103, 1–21 (1999).
[CrossRef]

Cremers, D. A.

Dell’Olio, M.

L. Garofano, M. Capra, F. Ferrari, G. P. Bizzaro, D. Di Tullio, M. Dell’Olio, A. Ghitti, “Gunshot residue. Further studies on particles of environmental and occupational origin,” Forensic Sci. Int. 103, 1–21 (1999).
[CrossRef]

Di Tullio, D.

L. Garofano, M. Capra, F. Ferrari, G. P. Bizzaro, D. Di Tullio, M. Dell’Olio, A. Ghitti, “Gunshot residue. Further studies on particles of environmental and occupational origin,” Forensic Sci. Int. 103, 1–21 (1999).
[CrossRef]

Eppler, A. S.

Exline, D. L.

A. J. Schwoeble, D. L. Exline, Current Methods in Forensic Gunshot Residue Analysis (CRC Press, Boca Raton, Fla., 2000).

Ferrari, F.

L. Garofano, M. Capra, F. Ferrari, G. P. Bizzaro, D. Di Tullio, M. Dell’Olio, A. Ghitti, “Gunshot residue. Further studies on particles of environmental and occupational origin,” Forensic Sci. Int. 103, 1–21 (1999).
[CrossRef]

Ferris, M. J.

Garofano, L.

L. Garofano, M. Capra, F. Ferrari, G. P. Bizzaro, D. Di Tullio, M. Dell’Olio, A. Ghitti, “Gunshot residue. Further studies on particles of environmental and occupational origin,” Forensic Sci. Int. 103, 1–21 (1999).
[CrossRef]

Ghitti, A.

L. Garofano, M. Capra, F. Ferrari, G. P. Bizzaro, D. Di Tullio, M. Dell’Olio, A. Ghitti, “Gunshot residue. Further studies on particles of environmental and occupational origin,” Forensic Sci. Int. 103, 1–21 (1999).
[CrossRef]

Gillain, G.

C. Brihaye, R. Machiroux, G. Gillain, “Gunpowder residues detection by anodic stripping voltammetry,” Forensic Sci. Int. 20, 269–276 (1982).
[CrossRef]

Gilroy, R.

H. C. Harrison, R. Gilroy, “Firearms discharge residues,” J. Forensic Sci. 4, 184–199 (1959).

Goode, S. R.

N. E. Schmidt, S. R. Goode, “Analysis of aqueous solutions by laser-induced breakdown spectroscopy of ion exchange membranes,” Appl. Spectrosc. 56, 370–374 (2002).
[CrossRef]

S. R. Goode, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
[CrossRef]

Harrison, H. C.

H. C. Harrison, R. Gilroy, “Firearms discharge residues,” J. Forensic Sci. 4, 184–199 (1959).

Havekost, D. G.

R. D. Koons, D. G. Havekost, C. A. Peters, “Determination of barium in gunshot residue collection swabs using inductively coupled plasma-atomic emission spectrometry,” J. Forensic Sci. 33, 35–41 (1988).

Hickmott, D. D.

Hoskins, R.

S. R. Goode, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
[CrossRef]

Jones, P. F.

R. S. Nesbitt, J. E. Wessel, P. F. Jones, “Detection of gunshot residue by use of the scanning electron microscope,” J. Forensic Sci. 21, 595–610 (1976).
[PubMed]

Koons, R. D.

R. D. Koons, D. G. Havekost, C. A. Peters, “Determination of barium in gunshot residue collection swabs using inductively coupled plasma-atomic emission spectrometry,” J. Forensic Sci. 33, 35–41 (1988).

Kopec, R. J.

R. J. Kopec, “The application of prefiltration to the analysis of acid-degraded gunshot residue swabs,” J. Forensic Sci. 24, 92–95 (1979).

Koskelo, A. C.

Lee, Y.

Y. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000).

Loper, G. L.

G. M. Wolten, R. S. Nesbitt, A. R. Calloway, G. L. Loper, “Particle analysis for the determination of gunshot residue. II. Occupational and environmental particles,” J. Forensic Sci. 24, 423–430 (1979).

Machiroux, R.

C. Brihaye, R. Machiroux, G. Gillain, “Gunpowder residues detection by anodic stripping voltammetry,” Forensic Sci. Int. 20, 269–276 (1982).
[CrossRef]

Margot, P.

F. S. Romolo, P. Margot, “Identification of gunshot residue: a critical review,” Forensic Sci. Int. 119, 195–211 (2001).
[CrossRef]

McFarland, R. C.

R. C. McFarland, M. E. McLain, “Rapid neutron activation analysis for gunshot residue determination,” J. Forensic Sci. 18, 226–231 (1973).
[PubMed]

McLain, M. E.

R. C. McFarland, M. E. McLain, “Rapid neutron activation analysis for gunshot residue determination,” J. Forensic Sci. 18, 226–231 (1973).
[PubMed]

McQuillan, J.

J. S. Wallace, J. McQuillan, “Discharge residues from cartridge-operated industrial tools,” J. Forensic Sci. Soc. 24, 495–508 (1984).
[CrossRef]

McVicar, M. J.

P. V. Mosher, M. J. McVicar, E. D. Randall, E. H. Sild, “Gunshot residue-similar particles produced by fireworks,” Can. Soc. Forensic Sci. J. 31, 157–168 (1998).

Morgan, S. L.

S. R. Goode, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
[CrossRef]

Mosher, P. V.

P. V. Mosher, M. J. McVicar, E. D. Randall, E. H. Sild, “Gunshot residue-similar particles produced by fireworks,” Can. Soc. Forensic Sci. J. 31, 157–168 (1998).

Nesbitt, R. S.

G. M. Wolten, R. S. Nesbitt, A. R. Calloway, G. L. Loper, “Particle analysis for the determination of gunshot residue. II. Occupational and environmental particles,” J. Forensic Sci. 24, 423–430 (1979).

R. S. Nesbitt, J. E. Wessel, P. F. Jones, “Detection of gunshot residue by use of the scanning electron microscope,” J. Forensic Sci. 21, 595–610 (1976).
[PubMed]

Newton, J. T.

J. T. Newton, “Rapid determination of antimony, barium, and lead in gunshot residue via automated atomic absorption spectrophotometry,” J. Forensic Sci. 26, 302–312 (1981).

Oxsher, A.

S. R. Goode, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
[CrossRef]

Peters, C. A.

R. D. Koons, D. G. Havekost, C. A. Peters, “Determination of barium in gunshot residue collection swabs using inductively coupled plasma-atomic emission spectrometry,” J. Forensic Sci. 33, 35–41 (1988).

Randall, E. D.

P. V. Mosher, M. J. McVicar, E. D. Randall, E. H. Sild, “Gunshot residue-similar particles produced by fireworks,” Can. Soc. Forensic Sci. J. 31, 157–168 (1998).

Romolo, F. S.

F. S. Romolo, P. Margot, “Identification of gunshot residue: a critical review,” Forensic Sci. Int. 119, 195–211 (2001).
[CrossRef]

Schmidt, N. E.

Schwoeble, A. J.

A. J. Schwoeble, D. L. Exline, Current Methods in Forensic Gunshot Residue Analysis (CRC Press, Boca Raton, Fla., 2000).

Sild, E. H.

P. V. Mosher, M. J. McVicar, E. D. Randall, E. H. Sild, “Gunshot residue-similar particles produced by fireworks,” Can. Soc. Forensic Sci. J. 31, 157–168 (1998).

Sneddon, J.

Y. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000).

Song, K.

Y. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000).

Wallace, J. S.

J. S. Wallace, J. McQuillan, “Discharge residues from cartridge-operated industrial tools,” J. Forensic Sci. Soc. 24, 495–508 (1984).
[CrossRef]

Wessel, J. E.

R. S. Nesbitt, J. E. Wessel, P. F. Jones, “Detection of gunshot residue by use of the scanning electron microscope,” J. Forensic Sci. 21, 595–610 (1976).
[PubMed]

Wolten, G. M.

G. M. Wolten, R. S. Nesbitt, A. R. Calloway, G. L. Loper, “Particle analysis for the determination of gunshot residue. II. Occupational and environmental particles,” J. Forensic Sci. 24, 423–430 (1979).

Appl. Spectrosc. (2)

Can. Soc. Forensic Sci. J. (1)

P. V. Mosher, M. J. McVicar, E. D. Randall, E. H. Sild, “Gunshot residue-similar particles produced by fireworks,” Can. Soc. Forensic Sci. J. 31, 157–168 (1998).

Forensic Sci. Int. (3)

L. Garofano, M. Capra, F. Ferrari, G. P. Bizzaro, D. Di Tullio, M. Dell’Olio, A. Ghitti, “Gunshot residue. Further studies on particles of environmental and occupational origin,” Forensic Sci. Int. 103, 1–21 (1999).
[CrossRef]

F. S. Romolo, P. Margot, “Identification of gunshot residue: a critical review,” Forensic Sci. Int. 119, 195–211 (2001).
[CrossRef]

C. Brihaye, R. Machiroux, G. Gillain, “Gunpowder residues detection by anodic stripping voltammetry,” Forensic Sci. Int. 20, 269–276 (1982).
[CrossRef]

J. Anal. At. Spectrom. (1)

S. R. Goode, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
[CrossRef]

J. Forensic Sci. (7)

R. S. Nesbitt, J. E. Wessel, P. F. Jones, “Detection of gunshot residue by use of the scanning electron microscope,” J. Forensic Sci. 21, 595–610 (1976).
[PubMed]

G. M. Wolten, R. S. Nesbitt, A. R. Calloway, G. L. Loper, “Particle analysis for the determination of gunshot residue. II. Occupational and environmental particles,” J. Forensic Sci. 24, 423–430 (1979).

R. D. Koons, D. G. Havekost, C. A. Peters, “Determination of barium in gunshot residue collection swabs using inductively coupled plasma-atomic emission spectrometry,” J. Forensic Sci. 33, 35–41 (1988).

H. C. Harrison, R. Gilroy, “Firearms discharge residues,” J. Forensic Sci. 4, 184–199 (1959).

R. J. Kopec, “The application of prefiltration to the analysis of acid-degraded gunshot residue swabs,” J. Forensic Sci. 24, 92–95 (1979).

J. T. Newton, “Rapid determination of antimony, barium, and lead in gunshot residue via automated atomic absorption spectrophotometry,” J. Forensic Sci. 26, 302–312 (1981).

R. C. McFarland, M. E. McLain, “Rapid neutron activation analysis for gunshot residue determination,” J. Forensic Sci. 18, 226–231 (1973).
[PubMed]

J. Forensic Sci. Soc. (1)

J. S. Wallace, J. McQuillan, “Discharge residues from cartridge-operated industrial tools,” J. Forensic Sci. Soc. 24, 495–508 (1984).
[CrossRef]

Other (3)

A. J. Schwoeble, D. L. Exline, Current Methods in Forensic Gunshot Residue Analysis (CRC Press, Boca Raton, Fla., 2000).

Y. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000).

Federal court case, Daubert v. Merrell Dow Pharmaceuticals, 509 U.S. 579 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Block diagram of the LIBS instrumentation.

Fig. 2
Fig. 2

Representative laser-induced breakdown spectra. Instrumentation and parameters are described in Table 1. (A) Representative emission spectrum of a blank. Sampling stub applied to the hand of a nonshooter. Predominant emission lines are attributed to Ca (I) 422.6728, Na (I) 588.9950, Na (I) 589.5924, K (I) 766.4911, and K (I) 769.8974. (B) Representative emission spectrum of a positive GSR test. Sampling stub applied to the hands of a person who has fired five shots from a clean gun. Emission lines indicative of GSR are Ba (II) 455.403, Ba (II) 493.409, Ba (I) 553.548, Ba (II) 614.172, *doublet Ba (II) 649.690, Ba (I) 649.876, and Ba (I) 705.994.

Fig. 3
Fig. 3

Predicting error rates by mathematical simulation. The number of wavelengths at which 1000 samples, each sample representing the GSR from firing a single shot from a clean gun, exceeds the background by a specified amount. (A) The sample exceeds the blank by at least 1.5σ. (B) The sample exceeds the blank by at least 3σ.

Tables (3)

Tables Icon

Table 1 LIBS Instrumentation

Tables Icon

Table 2 Results of Test Firing Experiments

Tables Icon

Table 3 Number of Wavelengths at Which the Sample Exceeds the Blank Based on 1000 Simulated Spectra

Metrics