Abstract

Multielemental microanalysis of commercially available aluminum alloys has been performed in air by laser-induced breakdown spectroscopy (LIBS) by use of UV laser pulses with energies below 10 µJ. It is shown that the LIBS technique is capable of detecting the elemental composition of particles less than 10 µm in size, such as precipitates in an aluminum alloy matrix, by using single laser shots. Chemical mapping with a lateral resolution of ∼10 µm of the distribution of precipitates in the surface plane of a sample was also carried out. Two main types of precipitate, namely, Mn-Fe-Cu (type I) and Mg-Cu (type II), were unambiguously distinguished in our LIBS experiments, in good agreement with x-ray microanalysis measurements. The relative standard deviations of emission of the main minor constituent elements (Cu, Mg, Mn) of the aluminum 2024 alloy range from 33% to 39% when laser shots on the precipitates are included in the analysis but decrease to a range from 5.3% to 7.4% when laser shots are taken only on the matrix material, excluding the precipitates.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski, D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  2. C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminum samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
    [CrossRef]
  3. G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses,” Appl. Spectrosc. 56, 689–698 (2002).
    [CrossRef]
  4. M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
    [CrossRef]
  5. B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. V. Johnston, S. Laville, F. Vidal, Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
    [CrossRef]
  6. C. Nouvellon, C. Chaleard, J.-L. Lacour, P. Mauchien, “Stoichiometry study of laser produced plasma by optical emission spectroscopy,” Appl. Surf. Sci. 138–139, 306–310 (1999).
    [CrossRef]
  7. L. M. Cabalin, J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723–730 (1998).
    [CrossRef]
  8. L. F. Mondolfo, Aluminum Alloys: Structure and Properties (Butterworth, London, 1976).
  9. T. Lyman, ed., Atlas of Microstructures of Industrial Alloys8th ed., Vol. 7 of Metals Handbook (American Society for Metals, Ohio, 1972), p. 247.
  10. B. Nemet, L. Kozna, “Time resolved optical emission spectrometry of Q-switched Nd:YAG laser-induced plasmas from copper targets in air at atmospheric pressure,” Spectrochim. Acta Part B 50, 1869–1888 (1995).
    [CrossRef]
  11. H. C. Liu, X. L. Mao, J. H. Yoo, R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta Part B 54, 1607–1624 (1999).
    [CrossRef]
  12. G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta Part B 58, 497–510 (2003).
    [CrossRef]
  13. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot size,” Opt. Lett. 7, 196–198 (1982).
    [CrossRef] [PubMed]
  14. J. Bonse, H. Sturm, D. Schmidt, W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys. A 71, 657–665 (2000).
    [CrossRef]
  15. B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T. V. Johnston, S. Laville, M. Sabsabi, J. Margot, “Ablation of aluminum thin films by ultrashort laser pulses,” J. Appl. Phys. 89, 8247–8252 (2001).
    [CrossRef]

2003

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta Part B 58, 497–510 (2003).
[CrossRef]

2002

2001

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. V. Johnston, S. Laville, F. Vidal, Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T. V. Johnston, S. Laville, M. Sabsabi, J. Margot, “Ablation of aluminum thin films by ultrashort laser pulses,” J. Appl. Phys. 89, 8247–8252 (2001).
[CrossRef]

2000

J. Bonse, H. Sturm, D. Schmidt, W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys. A 71, 657–665 (2000).
[CrossRef]

1999

C. Nouvellon, C. Chaleard, J.-L. Lacour, P. Mauchien, “Stoichiometry study of laser produced plasma by optical emission spectroscopy,” Appl. Surf. Sci. 138–139, 306–310 (1999).
[CrossRef]

H. C. Liu, X. L. Mao, J. H. Yoo, R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta Part B 54, 1607–1624 (1999).
[CrossRef]

1998

L. M. Cabalin, J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723–730 (1998).
[CrossRef]

1996

C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminum samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

1995

M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
[CrossRef]

B. Nemet, L. Kozna, “Time resolved optical emission spectrometry of Q-switched Nd:YAG laser-induced plasmas from copper targets in air at atmospheric pressure,” Spectrochim. Acta Part B 50, 1869–1888 (1995).
[CrossRef]

1982

Barthelemy, O.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. V. Johnston, S. Laville, F. Vidal, Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Bonse, J.

J. Bonse, H. Sturm, D. Schmidt, W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys. A 71, 657–665 (2000).
[CrossRef]

Cabalin, L. M.

L. M. Cabalin, J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723–730 (1998).
[CrossRef]

Chaker, M.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. V. Johnston, S. Laville, F. Vidal, Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T. V. Johnston, S. Laville, M. Sabsabi, J. Margot, “Ablation of aluminum thin films by ultrashort laser pulses,” J. Appl. Phys. 89, 8247–8252 (2001).
[CrossRef]

Chaleard, C.

C. Nouvellon, C. Chaleard, J.-L. Lacour, P. Mauchien, “Stoichiometry study of laser produced plasma by optical emission spectroscopy,” Appl. Surf. Sci. 138–139, 306–310 (1999).
[CrossRef]

Cielo, P.

Fedosejevs, R.

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta Part B 58, 497–510 (2003).
[CrossRef]

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses,” Appl. Spectrosc. 56, 689–698 (2002).
[CrossRef]

Geertsen, C.

C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminum samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Johnston, T. V.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. V. Johnston, S. Laville, F. Vidal, Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T. V. Johnston, S. Laville, M. Sabsabi, J. Margot, “Ablation of aluminum thin films by ultrashort laser pulses,” J. Appl. Phys. 89, 8247–8252 (2001).
[CrossRef]

Kautek, W.

J. Bonse, H. Sturm, D. Schmidt, W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys. A 71, 657–665 (2000).
[CrossRef]

Kozna, L.

B. Nemet, L. Kozna, “Time resolved optical emission spectrometry of Q-switched Nd:YAG laser-induced plasmas from copper targets in air at atmospheric pressure,” Spectrochim. Acta Part B 50, 1869–1888 (1995).
[CrossRef]

Lacour, J.-L.

C. Nouvellon, C. Chaleard, J.-L. Lacour, P. Mauchien, “Stoichiometry study of laser produced plasma by optical emission spectroscopy,” Appl. Surf. Sci. 138–139, 306–310 (1999).
[CrossRef]

C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminum samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Laserna, J. J.

L. M. Cabalin, J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723–730 (1998).
[CrossRef]

Laville, S.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. V. Johnston, S. Laville, F. Vidal, Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T. V. Johnston, S. Laville, M. Sabsabi, J. Margot, “Ablation of aluminum thin films by ultrashort laser pulses,” J. Appl. Phys. 89, 8247–8252 (2001).
[CrossRef]

Le Drogoff, B.

B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T. V. Johnston, S. Laville, M. Sabsabi, J. Margot, “Ablation of aluminum thin films by ultrashort laser pulses,” J. Appl. Phys. 89, 8247–8252 (2001).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. V. Johnston, S. Laville, F. Vidal, Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Liu, H. C.

H. C. Liu, X. L. Mao, J. H. Yoo, R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta Part B 54, 1607–1624 (1999).
[CrossRef]

Liu, J. M.

Mao, X. L.

H. C. Liu, X. L. Mao, J. H. Yoo, R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta Part B 54, 1607–1624 (1999).
[CrossRef]

Margot, J.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. V. Johnston, S. Laville, F. Vidal, Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T. V. Johnston, S. Laville, M. Sabsabi, J. Margot, “Ablation of aluminum thin films by ultrashort laser pulses,” J. Appl. Phys. 89, 8247–8252 (2001).
[CrossRef]

Mauchien, P.

C. Nouvellon, C. Chaleard, J.-L. Lacour, P. Mauchien, “Stoichiometry study of laser produced plasma by optical emission spectroscopy,” Appl. Surf. Sci. 138–139, 306–310 (1999).
[CrossRef]

C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminum samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Mondolfo, L. F.

L. F. Mondolfo, Aluminum Alloys: Structure and Properties (Butterworth, London, 1976).

Nemet, B.

B. Nemet, L. Kozna, “Time resolved optical emission spectrometry of Q-switched Nd:YAG laser-induced plasmas from copper targets in air at atmospheric pressure,” Spectrochim. Acta Part B 50, 1869–1888 (1995).
[CrossRef]

Nouvellon, C.

C. Nouvellon, C. Chaleard, J.-L. Lacour, P. Mauchien, “Stoichiometry study of laser produced plasma by optical emission spectroscopy,” Appl. Surf. Sci. 138–139, 306–310 (1999).
[CrossRef]

Pierrard, L.

C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminum samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Rieger, G. W.

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta Part B 58, 497–510 (2003).
[CrossRef]

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses,” Appl. Spectrosc. 56, 689–698 (2002).
[CrossRef]

Russo, R. E.

H. C. Liu, X. L. Mao, J. H. Yoo, R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta Part B 54, 1607–1624 (1999).
[CrossRef]

Sabsabi, M.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. V. Johnston, S. Laville, F. Vidal, Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T. V. Johnston, S. Laville, M. Sabsabi, J. Margot, “Ablation of aluminum thin films by ultrashort laser pulses,” J. Appl. Phys. 89, 8247–8252 (2001).
[CrossRef]

M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
[CrossRef]

Schmidt, D.

J. Bonse, H. Sturm, D. Schmidt, W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys. A 71, 657–665 (2000).
[CrossRef]

Sturm, H.

J. Bonse, H. Sturm, D. Schmidt, W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys. A 71, 657–665 (2000).
[CrossRef]

Taschuk, M.

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta Part B 58, 497–510 (2003).
[CrossRef]

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses,” Appl. Spectrosc. 56, 689–698 (2002).
[CrossRef]

Tsui, Y. Y.

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta Part B 58, 497–510 (2003).
[CrossRef]

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses,” Appl. Spectrosc. 56, 689–698 (2002).
[CrossRef]

Vidal, F.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. V. Johnston, S. Laville, F. Vidal, Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T. V. Johnston, S. Laville, M. Sabsabi, J. Margot, “Ablation of aluminum thin films by ultrashort laser pulses,” J. Appl. Phys. 89, 8247–8252 (2001).
[CrossRef]

von Kaenel, Y.

B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T. V. Johnston, S. Laville, M. Sabsabi, J. Margot, “Ablation of aluminum thin films by ultrashort laser pulses,” J. Appl. Phys. 89, 8247–8252 (2001).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. V. Johnston, S. Laville, F. Vidal, Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Yoo, J. H.

H. C. Liu, X. L. Mao, J. H. Yoo, R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta Part B 54, 1607–1624 (1999).
[CrossRef]

Appl. Phys. A

J. Bonse, H. Sturm, D. Schmidt, W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys. A 71, 657–665 (2000).
[CrossRef]

Appl. Spectrosc.

Appl. Surf. Sci.

C. Nouvellon, C. Chaleard, J.-L. Lacour, P. Mauchien, “Stoichiometry study of laser produced plasma by optical emission spectroscopy,” Appl. Surf. Sci. 138–139, 306–310 (1999).
[CrossRef]

J. Appl. Phys.

B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T. V. Johnston, S. Laville, M. Sabsabi, J. Margot, “Ablation of aluminum thin films by ultrashort laser pulses,” J. Appl. Phys. 89, 8247–8252 (2001).
[CrossRef]

Opt. Lett.

Spectrochim. Acta Part B

B. Nemet, L. Kozna, “Time resolved optical emission spectrometry of Q-switched Nd:YAG laser-induced plasmas from copper targets in air at atmospheric pressure,” Spectrochim. Acta Part B 50, 1869–1888 (1995).
[CrossRef]

H. C. Liu, X. L. Mao, J. H. Yoo, R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta Part B 54, 1607–1624 (1999).
[CrossRef]

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta Part B 58, 497–510 (2003).
[CrossRef]

L. M. Cabalin, J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723–730 (1998).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. V. Johnston, S. Laville, F. Vidal, Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminum samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Other

L. J. Radziemski, D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

L. F. Mondolfo, Aluminum Alloys: Structure and Properties (Butterworth, London, 1976).

T. Lyman, ed., Atlas of Microstructures of Industrial Alloys8th ed., Vol. 7 of Metals Handbook (American Society for Metals, Ohio, 1972), p. 247.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental LIBS setup. HR, highly reflecting; ICCD, intensified CCD camera.

Fig. 2
Fig. 2

SEM of an Al 2024 alloy surface taken in backscattered electron mode. The bright areas correspond to the precipitates with higher concentrations of high-Z elements such as Cu, Mn, and Fe compared with the Al matrix (dark areas).

Fig. 3
Fig. 3

Single-shot LIBS spectra obtained from an Al 2024 alloy matrix at laser pulse energies of 7.4 and 1 µJ. The same scale units were used for both figures.

Fig. 4
Fig. 4

SEMs of craters produced on an Al-alloy surface by single laser shots with pulse energies of 9.1, 1.3, and 0.4 µJ (top to bottom) for the same focal position.

Fig. 5
Fig. 5

Relationship of squared outer and inner diameters of the craters produced on the Al-alloy matrix by a single UV laser shot to pulse energy E laser. Solid and dashed curves represent least-squares fits by logarithmic functions of the types D outer 2 = 36.4 ln(E laser) + 58.3 and D inner 2 = 18.5 ln(E laser) + 34.3, respectively.

Fig. 6
Fig. 6

SEMs of an Al 2024 alloy surface taken in both backscattered electron (a)–(c) and secondary-electron (d) modes with craters produced by single UV laser shots of pulse energies of ∼7 µJ on a matrix (M1 and M2) and on selected precipitates (P1 and P2).

Fig. 7
Fig. 7

(a), (c) Comparison of single-shot LIBS spectra obtained from an Al 2024 alloy matrix and from Mn-Fe-Cu (type I) and Mg-Cu (type II) precipitates, respectively. (b), (d) Rescaled plots of (a) and (c), respectively. The laser pulse energy is approximately (a) 7 µJ and (c) 7.5 µJ.

Fig. 8
Fig. 8

Distribution of line intensities of the corresponding constituent elements of the Al 2024 alloy sample over 98 consecutive laser shots. Horizontal dashed lines, corresponding 3σ deviations from the average matrix values. Multiplication of a shot number by 10 gives the corresponding lateral distance across the sample’s surface in micrometers.

Tables (2)

Tables Icon

Table 1 Concentrations of Constituent Elements (wt. %) in Aluminum Alloy Samples Measured with the X-Ray Microanalysis Systema

Tables Icon

Table 2 Comparison of the RSDs of the X-Ray Microanalysis Measured Concentrations of Main Constituent Elements in an Al 2024 Alloy Sample and the RSD of the Corresponding Line Intensities Measured by LIBS

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D2=2w02 lnElaser+C,
m=π/2ρhR2,

Metrics