Abstract

Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coal, or both; (2) at the exit of a glass-melting furnace burning natural gas and oxygen; and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Song, Y. I. Lee, J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
    [CrossRef]
  2. P. Monkhouse, “On-line diagnostic methods for metal species in industrial process gas,” Prog. Energy Combust. Sci. 28, 331–381 (2002).
    [CrossRef]
  3. X. D. Hou, B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
    [CrossRef]
  4. M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
    [CrossRef]
  5. J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
    [CrossRef]
  6. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Recent trends and the future of laser-induced plasma spectroscopy,” TrAC Trends Anal. Chem. 17, 453–461 (1998).
    [CrossRef]
  7. K. Song, Y. I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
    [CrossRef]
  8. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
    [CrossRef]
  9. L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).
    [CrossRef]
  10. V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
    [CrossRef]
  11. L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.
  12. D. A. Cremers, L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, eds. (Marcel Dekker, New York, 1987), pp. 351–414.
  13. Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13, R103–R115 (2002).
    [CrossRef]
  14. M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
    [CrossRef]
  15. P. M. Walsh, H. A. Johnsen, D. K. Ottesen, R. H. Christy, T. P. McGrath, B. Zimperman, S. E. Wien, G. C. England, “Measurements of metallic elements in the exhaust from a stationary, natural-gas-fueled, lean-burn, spark-ignition engine using laser-induced breakdown spectroscopy and comparison with U.S. EPA Methods 201A and 202,” presented at the Air and Waste Management Association 94th Annual Conference, Orlando, Fla., 24–28 June 2001.
  16. S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).
  17. S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
    [CrossRef]
  18. D. W. Hahn, K. R. Hencken, H. A. Johnsen, J. R. Ross, P. M. Walsh, R. H. Christy, S. D. Ziman, “Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production,” in Emission Inventory: Living in a Global Environment (Air and Waste Management Association, Sewickley, Pa., 1999), Vol. II, pp. 1175–1193.
  19. H. S. Zhang, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
    [CrossRef]
  20. P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
    [CrossRef]
  21. D. W. Hahn, K. R. Hencken, H. A. Johnsen, “Performance testing of a laser-induced breakdown spectroscopy (LIBS) based continuous metal emissions monitor at a pyrolytic waste treatment facility,” Rep. SAND97-8270 (Sandia National Laboratories, Livermore, Calif., 1997).
    [CrossRef]
  22. D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1844 (1997).
    [CrossRef]
  23. J. P. Singh, F. Y. Yueh, H. S. Zhang, R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).
  24. L. W. Peng, W. L. Flower, K. R. Hencken, H. A. Johnsen, R. F. Renzi, N. B. French, “A laser-based technique for continuously monitoring metal emissions from thermal waste treatment units,” Process Control Qual. 7, 39–49 (1995).
  25. W. Flower, L. Peng, C. Woods, N. Bergan French, K. Hencken, H. Johnsen, R. Renzi, D. Trujillo, “A continuous emissions monitor for metals: field demonstration of a prototype probe,” Rep. SAND95-8540 (Sandia National Laboratories, Livermore, Calif., 1995).
    [CrossRef]
  26. H. Zhang, J. P. Singh, F. Y. Yueh, R. L. Cook, “Laser-induced breakdown spectra in a coal-fired MHD facility,” Appl. Spectrosc. 49, 1617–1623 (1995).
    [CrossRef]
  27. W. L. Flower, L. W. Peng, M. P. Bonin, N. B. French, H. A. Johnsen, D. K. Ottesen, R. F. Renzi, L. V. Westbrook, “A laser-based technique to continuously monitor metal aerosol emissions,” Fuel Process. Technol. 39, 277–284 (1994).
    [CrossRef]
  28. D. K. Ottesen, “Laser spark emission spectroscopy of individual coal particles,” in Advances in Coal Spectroscopy, H. L. C. Meuzelaar, ed. (Plenum, New York, 1992), pp. 91–118.
  29. D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission-spectroscopy for in-situ real-time monitoring of pulverized coal particle composition,” Energy Fuels 5, 304–312 (1991).
    [CrossRef]
  30. D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverized coal particle composition,” Rep. SAND90-8586 (Sandia National Laboratories, Livermore, Calif., 1990).
  31. D. K. Ottesen, J. C. F. Wang, L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Appl. Spectrosc. 43, 967–976 (1989).
    [CrossRef]
  32. D. K. Ottesen, J. C. F. Wang, L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Rep. SAND88-8862 (Sandia National Laboratories, Livermore, Calif., 1988).
  33. B. L. Chadwick, D. Body, “Development and commercial evaluation of laser-induced breakdown spectroscopy chemical analysis technology in the coal power generation industry,” Appl. Spectrosc. 56, 70–74 (2002).
    [CrossRef]
  34. D. Body, B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
    [CrossRef]
  35. L. L. Sloss, R. M. Davidson, “Rapid analysis of trace elements in coal utilisation,” Rep. IEA CCC/46 (International Energy Agency Coal Research, London, 2001).
  36. F. J. Wallis, B. L. Chadwick, R. J. S. Morrison, “Analysis of lignite using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 54, 1231–1235 (2000).
    [CrossRef]
  37. D. R. Hardesty, D. K. Ottesen, “Optical diagnostics for in situ measurements in combustion environments containing coal particles,” Energy 12, 813–836 (1987).
    [CrossRef]
  38. D. R. Hardesty, “An assessment of optical diagnostics for in situ measurements in high temperature coal combustion and conversion flows,” Rep. SAND84-8724 (Sandia National Laboratories, Livermore, Calif., 1984).
  39. U. Panne, R. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Appl. Spectrosc. 56, 375–380 (2002).
    [CrossRef]
  40. C. Su, S. Feng, J. Singh, F. Yuen, J. Rigsby, D. Monts, R. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).
  41. B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
    [CrossRef]
  42. D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
    [CrossRef]
  43. D. W. Hahn, K. R. Hencken, H. A. Johnsen, W. L. Flower, “Method of improving instrument response,” U.S. patent6,061,641 (9May2000).
  44. D. W. Hahn, M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30–48 (2000).
    [CrossRef]
  45. K. R. Hencken, W. L. Flower, “Optical probe,” U.S. patent5,953,120 (14September1999).
  46. R. H. Christy, S. D. Ziman, “Fine particulate matter: how dirty is clean combustion?” presented at the Fourth Society of Petroleum Engineers/Environmental Protection Agency Exploration and Production Environmental Conference, Austin, Tex., 28 February-3 March 1999.
  47. W. L. Flower, R. F. Renzi, “Method and apparatus for calibrating a particle emissions monitor,” U.S. patent5,777,734 (7July1998).
  48. D. W. Hahn, “Laser-induced breakdown spectroscopy for sizing and elemental analysis of discrete aerosol particles,” Appl. Phys. Lett. 72, 2960–2962 (1998).
    [CrossRef]
  49. D. K. Ottesen, “Detection of contaminants on electronic microcircuit substrates by laser spark emission spectroscopy,” Appl. Spectrosc. 46, 593–596 (1992).
    [CrossRef]
  50. R. W. Schmieder, “Techniques and applications of laser spark spectroscopy,” Rep. SAND83-8618 (Sandia National Laboratories, Livermore, Calif., 1983).
  51. R. W. Schmieder, “Combustion applications of laser-induced breakdown spectroscopy,” Rep. SAND81-8886 (Sandia National Laboratories, Livermore, Calif., 1981).
  52. A. Uhl, K. Loebe, L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
    [CrossRef]
  53. V. Detalle, R. Heon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
    [CrossRef]
  54. U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 839–850 (2001).
    [CrossRef]
  55. S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
    [CrossRef]
  56. P. Lindblom, “New compact echelle spectrographs with multichannel time-resolved recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
    [CrossRef]
  57. H. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
    [CrossRef]
  58. H. Becker-Ross, S. Florek, “Echelle spectrometers and charge-coupled devices,” Spectrochim. Acta Part B 52, 1367–1375 (1997).
    [CrossRef]
  59. J. R. Ross, S. R. Birtola, H. A. Johnsen, “Purge and cooling for the LIBS optical probe,” U.S. patent application (26March2002).
  60. S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
    [CrossRef]
  61. S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
    [CrossRef]
  62. B. M. Jenkins, P. Thy, S. Q. Turn, L. G. Blevins, L. A. Jakeway, R. B. Williams, B. C. Wu, L. L. Baxter, “Composition and microstructure of ash deposits from co-firing biomass and coal,” in BioEnergy 2002, J. Crockett, C. L. Peterson, eds. (Omnipress, Boise, Idaho, 2002), paper 2107.
  63. R. D. Moore, J. T. Brown, “Conversion of a large container furnace from regenerative firing to direct oxy-fuel combustion,” Ceram. Eng. Sci. Proc. 13, 18–24 (1992).
    [CrossRef]
  64. R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).
  65. P. M. Walsh, R. D. Moore, J. Neufeld, L. Lemings, J. T. Brown, K. T. Wu, “Sodium volatilization and silica refractory corrosion in an oxygen/natural-gas-fired soda-lime-silica glass melting furnace,” in Proceedings of the XIX International Congress on Glass (Society of Glass Technology, Sheffield, UK, 2001), Vol. 2, Extended Abstracts, pp. 134–135.
  66. L. Dudragne, P. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
    [CrossRef]
  67. A. Gonzalez, M. Ortiz, J. Campos, “Determination of sulfur-content in steel by laser-produced plasma-atomic emission-spectroscopy,” Appl. Spectrosc. 49, 1632–1635 (1995).
    [CrossRef]

2003 (1)

R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).

2002 (6)

K. Song, Y. I. Lee, J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

P. Monkhouse, “On-line diagnostic methods for metal species in industrial process gas,” Prog. Energy Combust. Sci. 28, 331–381 (2002).
[CrossRef]

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13, R103–R115 (2002).
[CrossRef]

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

B. L. Chadwick, D. Body, “Development and commercial evaluation of laser-induced breakdown spectroscopy chemical analysis technology in the coal power generation industry,” Appl. Spectrosc. 56, 70–74 (2002).
[CrossRef]

U. Panne, R. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Appl. Spectrosc. 56, 375–380 (2002).
[CrossRef]

2001 (7)

A. Uhl, K. Loebe, L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
[CrossRef]

V. Detalle, R. Heon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 839–850 (2001).
[CrossRef]

S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
[CrossRef]

D. Body, B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
[CrossRef]

B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
[CrossRef]

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

2000 (6)

D. W. Hahn, M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30–48 (2000).
[CrossRef]

F. J. Wallis, B. L. Chadwick, R. J. S. Morrison, “Analysis of lignite using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 54, 1231–1235 (2000).
[CrossRef]

C. Su, S. Feng, J. Singh, F. Yuen, J. Rigsby, D. Monts, R. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

X. D. Hou, B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
[CrossRef]

1999 (5)

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

H. S. Zhang, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
[CrossRef]

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

P. Lindblom, “New compact echelle spectrographs with multichannel time-resolved recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
[CrossRef]

1998 (5)

H. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

D. W. Hahn, “Laser-induced breakdown spectroscopy for sizing and elemental analysis of discrete aerosol particles,” Appl. Phys. Lett. 72, 2960–2962 (1998).
[CrossRef]

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Recent trends and the future of laser-induced plasma spectroscopy,” TrAC Trends Anal. Chem. 17, 453–461 (1998).
[CrossRef]

L. Dudragne, P. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
[CrossRef]

1997 (5)

K. Song, Y. I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1844 (1997).
[CrossRef]

J. P. Singh, F. Y. Yueh, H. S. Zhang, R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).

H. Becker-Ross, S. Florek, “Echelle spectrometers and charge-coupled devices,” Spectrochim. Acta Part B 52, 1367–1375 (1997).
[CrossRef]

1996 (1)

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
[CrossRef]

1995 (3)

L. W. Peng, W. L. Flower, K. R. Hencken, H. A. Johnsen, R. F. Renzi, N. B. French, “A laser-based technique for continuously monitoring metal emissions from thermal waste treatment units,” Process Control Qual. 7, 39–49 (1995).

H. Zhang, J. P. Singh, F. Y. Yueh, R. L. Cook, “Laser-induced breakdown spectra in a coal-fired MHD facility,” Appl. Spectrosc. 49, 1617–1623 (1995).
[CrossRef]

A. Gonzalez, M. Ortiz, J. Campos, “Determination of sulfur-content in steel by laser-produced plasma-atomic emission-spectroscopy,” Appl. Spectrosc. 49, 1632–1635 (1995).
[CrossRef]

1994 (2)

W. L. Flower, L. W. Peng, M. P. Bonin, N. B. French, H. A. Johnsen, D. K. Ottesen, R. F. Renzi, L. V. Westbrook, “A laser-based technique to continuously monitor metal aerosol emissions,” Fuel Process. Technol. 39, 277–284 (1994).
[CrossRef]

L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).
[CrossRef]

1992 (3)

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

R. D. Moore, J. T. Brown, “Conversion of a large container furnace from regenerative firing to direct oxy-fuel combustion,” Ceram. Eng. Sci. Proc. 13, 18–24 (1992).
[CrossRef]

D. K. Ottesen, “Detection of contaminants on electronic microcircuit substrates by laser spark emission spectroscopy,” Appl. Spectrosc. 46, 593–596 (1992).
[CrossRef]

1991 (1)

D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission-spectroscopy for in-situ real-time monitoring of pulverized coal particle composition,” Energy Fuels 5, 304–312 (1991).
[CrossRef]

1989 (1)

1987 (1)

D. R. Hardesty, D. K. Ottesen, “Optical diagnostics for in situ measurements in combustion environments containing coal particles,” Energy 12, 813–836 (1987).
[CrossRef]

Abe, Y.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13, R103–R115 (2002).
[CrossRef]

Adam, P.

Allendorf, M. D.

R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).

Amouroux, J.

Arsenault, G. R.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Bauer, H.

H. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

Baxter, L. L.

D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission-spectroscopy for in-situ real-time monitoring of pulverized coal particle composition,” Energy Fuels 5, 304–312 (1991).
[CrossRef]

D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverized coal particle composition,” Rep. SAND90-8586 (Sandia National Laboratories, Livermore, Calif., 1990).

B. M. Jenkins, P. Thy, S. Q. Turn, L. G. Blevins, L. A. Jakeway, R. B. Williams, B. C. Wu, L. L. Baxter, “Composition and microstructure of ash deposits from co-firing biomass and coal,” in BioEnergy 2002, J. Crockett, C. L. Peterson, eds. (Omnipress, Boise, Idaho, 2002), paper 2107.

Becker-Ross, H.

S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
[CrossRef]

H. Becker-Ross, S. Florek, “Echelle spectrometers and charge-coupled devices,” Spectrochim. Acta Part B 52, 1367–1375 (1997).
[CrossRef]

Bergan French, N.

W. Flower, L. Peng, C. Woods, N. Bergan French, K. Hencken, H. Johnsen, R. Renzi, D. Trujillo, “A continuous emissions monitor for metals: field demonstration of a prototype probe,” Rep. SAND95-8540 (Sandia National Laboratories, Livermore, Calif., 1995).
[CrossRef]

Bhatia, K.

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

Birtola, S. R.

J. R. Ross, S. R. Birtola, H. A. Johnsen, “Purge and cooling for the LIBS optical probe,” U.S. patent application (26March2002).

Blevins, L. G.

B. M. Jenkins, P. Thy, S. Q. Turn, L. G. Blevins, L. A. Jakeway, R. B. Williams, B. C. Wu, L. L. Baxter, “Composition and microstructure of ash deposits from co-firing biomass and coal,” in BioEnergy 2002, J. Crockett, C. L. Peterson, eds. (Omnipress, Boise, Idaho, 2002), paper 2107.

Body, D.

B. L. Chadwick, D. Body, “Development and commercial evaluation of laser-induced breakdown spectroscopy chemical analysis technology in the coal power generation industry,” Appl. Spectrosc. 56, 70–74 (2002).
[CrossRef]

D. Body, B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
[CrossRef]

Bonin, M. P.

W. L. Flower, L. W. Peng, M. P. Bonin, N. B. French, H. A. Johnsen, D. K. Ottesen, R. F. Renzi, L. V. Westbrook, “A laser-based technique to continuously monitor metal aerosol emissions,” Fuel Process. Technol. 39, 277–284 (1994).
[CrossRef]

Brown, J. T.

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

R. D. Moore, J. T. Brown, “Conversion of a large container furnace from regenerative firing to direct oxy-fuel combustion,” Ceram. Eng. Sci. Proc. 13, 18–24 (1992).
[CrossRef]

P. M. Walsh, R. D. Moore, J. Neufeld, L. Lemings, J. T. Brown, K. T. Wu, “Sodium volatilization and silica refractory corrosion in an oxygen/natural-gas-fired soda-lime-silica glass melting furnace,” in Proceedings of the XIX International Congress on Glass (Society of Glass Technology, Sheffield, UK, 2001), Vol. 2, Extended Abstracts, pp. 134–135.

Buckley, S. G.

B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
[CrossRef]

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

Bugeat, B.

R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).

Burns, D. B.

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

Burrows, J. F.

D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission-spectroscopy for in-situ real-time monitoring of pulverized coal particle composition,” Energy Fuels 5, 304–312 (1991).
[CrossRef]

D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverized coal particle composition,” Rep. SAND90-8586 (Sandia National Laboratories, Livermore, Calif., 1990).

Campos, J.

Carranza, J. E.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Recent trends and the future of laser-induced plasma spectroscopy,” TrAC Trends Anal. Chem. 17, 453–461 (1998).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Chadwick, B. L.

Cheng, M. D.

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

Christy, R. H.

D. W. Hahn, K. R. Hencken, H. A. Johnsen, J. R. Ross, P. M. Walsh, R. H. Christy, S. D. Ziman, “Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production,” in Emission Inventory: Living in a Global Environment (Air and Waste Management Association, Sewickley, Pa., 1999), Vol. II, pp. 1175–1193.

P. M. Walsh, H. A. Johnsen, D. K. Ottesen, R. H. Christy, T. P. McGrath, B. Zimperman, S. E. Wien, G. C. England, “Measurements of metallic elements in the exhaust from a stationary, natural-gas-fueled, lean-burn, spark-ignition engine using laser-induced breakdown spectroscopy and comparison with U.S. EPA Methods 201A and 202,” presented at the Air and Waste Management Association 94th Annual Conference, Orlando, Fla., 24–28 June 2001.

R. H. Christy, S. D. Ziman, “Fine particulate matter: how dirty is clean combustion?” presented at the Fourth Society of Petroleum Engineers/Environmental Protection Agency Exploration and Production Environmental Conference, Austin, Tex., 28 February-3 March 1999.

Cook, R.

C. Su, S. Feng, J. Singh, F. Yuen, J. Rigsby, D. Monts, R. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Cook, R. L.

J. P. Singh, F. Y. Yueh, H. S. Zhang, R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).

H. Zhang, J. P. Singh, F. Y. Yueh, R. L. Cook, “Laser-induced breakdown spectra in a coal-fired MHD facility,” Appl. Spectrosc. 49, 1617–1623 (1995).
[CrossRef]

Cremers, D. A.

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.

D. A. Cremers, L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, eds. (Marcel Dekker, New York, 1987), pp. 351–414.

Crosley, D. R.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
[CrossRef]

Davidson, R. M.

L. L. Sloss, R. M. Davidson, “Rapid analysis of trace elements in coal utilisation,” Rep. IEA CCC/46 (International Energy Agency Coal Research, London, 2001).

Deguchi, Y.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13, R103–R115 (2002).
[CrossRef]

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Detalle, V.

V. Detalle, R. Heon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Dudragne, L.

Endo, Y.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13, R103–R115 (2002).
[CrossRef]

England, G. C.

P. M. Walsh, H. A. Johnsen, D. K. Ottesen, R. H. Christy, T. P. McGrath, B. Zimperman, S. E. Wien, G. C. England, “Measurements of metallic elements in the exhaust from a stationary, natural-gas-fueled, lean-burn, spark-ignition engine using laser-induced breakdown spectroscopy and comparison with U.S. EPA Methods 201A and 202,” presented at the Air and Waste Management Association 94th Annual Conference, Orlando, Fla., 24–28 June 2001.

Faris, G. W.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
[CrossRef]

Feng, S.

C. Su, S. Feng, J. Singh, F. Yuen, J. Rigsby, D. Monts, R. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Fink, H.

U. Panne, R. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Appl. Spectrosc. 56, 375–380 (2002).
[CrossRef]

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 839–850 (2001).
[CrossRef]

Fisher, B. T.

Florek, S.

S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
[CrossRef]

H. Becker-Ross, S. Florek, “Echelle spectrometers and charge-coupled devices,” Spectrochim. Acta Part B 52, 1367–1375 (1997).
[CrossRef]

Flower, W.

W. Flower, L. Peng, C. Woods, N. Bergan French, K. Hencken, H. Johnsen, R. Renzi, D. Trujillo, “A continuous emissions monitor for metals: field demonstration of a prototype probe,” Rep. SAND95-8540 (Sandia National Laboratories, Livermore, Calif., 1995).
[CrossRef]

Flower, W. L.

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1844 (1997).
[CrossRef]

L. W. Peng, W. L. Flower, K. R. Hencken, H. A. Johnsen, R. F. Renzi, N. B. French, “A laser-based technique for continuously monitoring metal emissions from thermal waste treatment units,” Process Control Qual. 7, 39–49 (1995).

W. L. Flower, L. W. Peng, M. P. Bonin, N. B. French, H. A. Johnsen, D. K. Ottesen, R. F. Renzi, L. V. Westbrook, “A laser-based technique to continuously monitor metal aerosol emissions,” Fuel Process. Technol. 39, 277–284 (1994).
[CrossRef]

W. L. Flower, R. F. Renzi, “Method and apparatus for calibrating a particle emissions monitor,” U.S. patent5,777,734 (7July1998).

D. W. Hahn, K. R. Hencken, H. A. Johnsen, W. L. Flower, “Method of improving instrument response,” U.S. patent6,061,641 (9May2000).

K. R. Hencken, W. L. Flower, “Optical probe,” U.S. patent5,953,120 (14September1999).

French, N. B.

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

L. W. Peng, W. L. Flower, K. R. Hencken, H. A. Johnsen, R. F. Renzi, N. B. French, “A laser-based technique for continuously monitoring metal emissions from thermal waste treatment units,” Process Control Qual. 7, 39–49 (1995).

W. L. Flower, L. W. Peng, M. P. Bonin, N. B. French, H. A. Johnsen, D. K. Ottesen, R. F. Renzi, L. V. Westbrook, “A laser-based technique to continuously monitor metal aerosol emissions,” Fuel Process. Technol. 39, 277–284 (1994).
[CrossRef]

Fukuda, Y.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13, R103–R115 (2002).
[CrossRef]

Gallagher, R. J.

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

Gonzalez, A.

Griffiths, S. K.

R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).

Haas, W. J.

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

Hahn, D. W.

B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
[CrossRef]

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

D. W. Hahn, M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30–48 (2000).
[CrossRef]

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

D. W. Hahn, “Laser-induced breakdown spectroscopy for sizing and elemental analysis of discrete aerosol particles,” Appl. Phys. Lett. 72, 2960–2962 (1998).
[CrossRef]

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1844 (1997).
[CrossRef]

D. W. Hahn, K. R. Hencken, H. A. Johnsen, “Performance testing of a laser-induced breakdown spectroscopy (LIBS) based continuous metal emissions monitor at a pyrolytic waste treatment facility,” Rep. SAND97-8270 (Sandia National Laboratories, Livermore, Calif., 1997).
[CrossRef]

D. W. Hahn, K. R. Hencken, H. A. Johnsen, J. R. Ross, P. M. Walsh, R. H. Christy, S. D. Ziman, “Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production,” in Emission Inventory: Living in a Global Environment (Air and Waste Management Association, Sewickley, Pa., 1999), Vol. II, pp. 1175–1193.

D. W. Hahn, K. R. Hencken, H. A. Johnsen, W. L. Flower, “Method of improving instrument response,” U.S. patent6,061,641 (9May2000).

Haisch, C.

U. Panne, R. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Appl. Spectrosc. 56, 375–380 (2002).
[CrossRef]

S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
[CrossRef]

Hardesty, D. R.

D. R. Hardesty, D. K. Ottesen, “Optical diagnostics for in situ measurements in combustion environments containing coal particles,” Energy 12, 813–836 (1987).
[CrossRef]

D. R. Hardesty, “An assessment of optical diagnostics for in situ measurements in high temperature coal combustion and conversion flows,” Rep. SAND84-8724 (Sandia National Laboratories, Livermore, Calif., 1984).

Hencken, K.

W. Flower, L. Peng, C. Woods, N. Bergan French, K. Hencken, H. Johnsen, R. Renzi, D. Trujillo, “A continuous emissions monitor for metals: field demonstration of a prototype probe,” Rep. SAND95-8540 (Sandia National Laboratories, Livermore, Calif., 1995).
[CrossRef]

Hencken, K. R.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1844 (1997).
[CrossRef]

L. W. Peng, W. L. Flower, K. R. Hencken, H. A. Johnsen, R. F. Renzi, N. B. French, “A laser-based technique for continuously monitoring metal emissions from thermal waste treatment units,” Process Control Qual. 7, 39–49 (1995).

D. W. Hahn, K. R. Hencken, H. A. Johnsen, “Performance testing of a laser-induced breakdown spectroscopy (LIBS) based continuous metal emissions monitor at a pyrolytic waste treatment facility,” Rep. SAND97-8270 (Sandia National Laboratories, Livermore, Calif., 1997).
[CrossRef]

D. W. Hahn, K. R. Hencken, H. A. Johnsen, J. R. Ross, P. M. Walsh, R. H. Christy, S. D. Ziman, “Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production,” in Emission Inventory: Living in a Global Environment (Air and Waste Management Association, Sewickley, Pa., 1999), Vol. II, pp. 1175–1193.

D. W. Hahn, K. R. Hencken, H. A. Johnsen, W. L. Flower, “Method of improving instrument response,” U.S. patent6,061,641 (9May2000).

K. R. Hencken, W. L. Flower, “Optical probe,” U.S. patent5,953,120 (14September1999).

Heon, R.

V. Detalle, R. Heon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Hinery, V. I.

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

Hou, X. D.

X. D. Hou, B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
[CrossRef]

Ichinose, Y.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13, R103–R115 (2002).
[CrossRef]

Inada, M.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13, R103–R115 (2002).
[CrossRef]

Iwasaki, S.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13, R103–R115 (2002).
[CrossRef]

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Jakeway, L. A.

B. M. Jenkins, P. Thy, S. Q. Turn, L. G. Blevins, L. A. Jakeway, R. B. Williams, B. C. Wu, L. L. Baxter, “Composition and microstructure of ash deposits from co-firing biomass and coal,” in BioEnergy 2002, J. Crockett, C. L. Peterson, eds. (Omnipress, Boise, Idaho, 2002), paper 2107.

Jenkins, B. M.

B. M. Jenkins, P. Thy, S. Q. Turn, L. G. Blevins, L. A. Jakeway, R. B. Williams, B. C. Wu, L. L. Baxter, “Composition and microstructure of ash deposits from co-firing biomass and coal,” in BioEnergy 2002, J. Crockett, C. L. Peterson, eds. (Omnipress, Boise, Idaho, 2002), paper 2107.

Johnsen, H.

W. Flower, L. Peng, C. Woods, N. Bergan French, K. Hencken, H. Johnsen, R. Renzi, D. Trujillo, “A continuous emissions monitor for metals: field demonstration of a prototype probe,” Rep. SAND95-8540 (Sandia National Laboratories, Livermore, Calif., 1995).
[CrossRef]

Johnsen, H. A.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
[CrossRef]

S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

L. W. Peng, W. L. Flower, K. R. Hencken, H. A. Johnsen, R. F. Renzi, N. B. French, “A laser-based technique for continuously monitoring metal emissions from thermal waste treatment units,” Process Control Qual. 7, 39–49 (1995).

W. L. Flower, L. W. Peng, M. P. Bonin, N. B. French, H. A. Johnsen, D. K. Ottesen, R. F. Renzi, L. V. Westbrook, “A laser-based technique to continuously monitor metal aerosol emissions,” Fuel Process. Technol. 39, 277–284 (1994).
[CrossRef]

D. W. Hahn, K. R. Hencken, H. A. Johnsen, “Performance testing of a laser-induced breakdown spectroscopy (LIBS) based continuous metal emissions monitor at a pyrolytic waste treatment facility,” Rep. SAND97-8270 (Sandia National Laboratories, Livermore, Calif., 1997).
[CrossRef]

D. W. Hahn, K. R. Hencken, H. A. Johnsen, J. R. Ross, P. M. Walsh, R. H. Christy, S. D. Ziman, “Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production,” in Emission Inventory: Living in a Global Environment (Air and Waste Management Association, Sewickley, Pa., 1999), Vol. II, pp. 1175–1193.

P. M. Walsh, H. A. Johnsen, D. K. Ottesen, R. H. Christy, T. P. McGrath, B. Zimperman, S. E. Wien, G. C. England, “Measurements of metallic elements in the exhaust from a stationary, natural-gas-fueled, lean-burn, spark-ignition engine using laser-induced breakdown spectroscopy and comparison with U.S. EPA Methods 201A and 202,” presented at the Air and Waste Management Association 94th Annual Conference, Orlando, Fla., 24–28 June 2001.

D. W. Hahn, K. R. Hencken, H. A. Johnsen, W. L. Flower, “Method of improving instrument response,” U.S. patent6,061,641 (9May2000).

J. R. Ross, S. R. Birtola, H. A. Johnsen, “Purge and cooling for the LIBS optical probe,” U.S. patent application (26March2002).

Jones, B. T.

X. D. Hou, B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
[CrossRef]

Joseph, M. R.

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

Koram, K. K.

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

Kreuchwig, L.

A. Uhl, K. Loebe, L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
[CrossRef]

Lee, Y. I.

K. Song, Y. I. Lee, J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

K. Song, Y. I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

Leis, F.

H. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

Lemieux, P. M.

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

Lemings, L.

P. M. Walsh, R. D. Moore, J. Neufeld, L. Lemings, J. T. Brown, K. T. Wu, “Sodium volatilization and silica refractory corrosion in an oxygen/natural-gas-fired soda-lime-silica glass melting furnace,” in Proceedings of the XIX International Congress on Glass (Society of Glass Technology, Sheffield, UK, 2001), Vol. 2, Extended Abstracts, pp. 134–135.

Lindblom, P.

P. Lindblom, “New compact echelle spectrographs with multichannel time-resolved recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
[CrossRef]

Loebe, K.

A. Uhl, K. Loebe, L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
[CrossRef]

Lunden, M. M.

D. W. Hahn, M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30–48 (2000).
[CrossRef]

Majidi, V.

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

Marin, O.

R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).

Martin, M. Z.

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

Martin, R. C.

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

McGrath, T. P.

P. M. Walsh, H. A. Johnsen, D. K. Ottesen, R. H. Christy, T. P. McGrath, B. Zimperman, S. E. Wien, G. C. England, “Measurements of metallic elements in the exhaust from a stationary, natural-gas-fueled, lean-burn, spark-ignition engine using laser-induced breakdown spectroscopy and comparison with U.S. EPA Methods 201A and 202,” presented at the Air and Waste Management Association 94th Annual Conference, Orlando, Fla., 24–28 June 2001.

Misra, M. K.

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

Monkhouse, P.

P. Monkhouse, “On-line diagnostic methods for metal species in industrial process gas,” Prog. Energy Combust. Sci. 28, 331–381 (2002).
[CrossRef]

Monts, D.

C. Su, S. Feng, J. Singh, F. Yuen, J. Rigsby, D. Monts, R. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Moore, R. D.

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

R. D. Moore, J. T. Brown, “Conversion of a large container furnace from regenerative firing to direct oxy-fuel combustion,” Ceram. Eng. Sci. Proc. 13, 18–24 (1992).
[CrossRef]

P. M. Walsh, R. D. Moore, J. Neufeld, L. Lemings, J. T. Brown, K. T. Wu, “Sodium volatilization and silica refractory corrosion in an oxygen/natural-gas-fired soda-lime-silica glass melting furnace,” in Proceedings of the XIX International Congress on Glass (Society of Glass Technology, Sheffield, UK, 2001), Vol. 2, Extended Abstracts, pp. 134–135.

Morrison, R. J. S.

Neufeld, J.

P. M. Walsh, R. D. Moore, J. Neufeld, L. Lemings, J. T. Brown, K. T. Wu, “Sodium volatilization and silica refractory corrosion in an oxygen/natural-gas-fired soda-lime-silica glass melting furnace,” in Proceedings of the XIX International Congress on Glass (Society of Glass Technology, Sheffield, UK, 2001), Vol. 2, Extended Abstracts, pp. 134–135.

Neuhauser, R.

Neuhauser, R. E.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 839–850 (2001).
[CrossRef]

Niemax, K.

H. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

Niessner, R.

U. Panne, R. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Appl. Spectrosc. 56, 375–380 (2002).
[CrossRef]

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 839–850 (2001).
[CrossRef]

Nilson, R. H.

R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).

Noda, M.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13, R103–R115 (2002).
[CrossRef]

Okruss, M.

S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
[CrossRef]

Ortiz, M.

Ottesen, D. K.

W. L. Flower, L. W. Peng, M. P. Bonin, N. B. French, H. A. Johnsen, D. K. Ottesen, R. F. Renzi, L. V. Westbrook, “A laser-based technique to continuously monitor metal aerosol emissions,” Fuel Process. Technol. 39, 277–284 (1994).
[CrossRef]

D. K. Ottesen, “Detection of contaminants on electronic microcircuit substrates by laser spark emission spectroscopy,” Appl. Spectrosc. 46, 593–596 (1992).
[CrossRef]

D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission-spectroscopy for in-situ real-time monitoring of pulverized coal particle composition,” Energy Fuels 5, 304–312 (1991).
[CrossRef]

D. K. Ottesen, J. C. F. Wang, L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Appl. Spectrosc. 43, 967–976 (1989).
[CrossRef]

D. R. Hardesty, D. K. Ottesen, “Optical diagnostics for in situ measurements in combustion environments containing coal particles,” Energy 12, 813–836 (1987).
[CrossRef]

D. K. Ottesen, J. C. F. Wang, L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Rep. SAND88-8862 (Sandia National Laboratories, Livermore, Calif., 1988).

D. K. Ottesen, “Laser spark emission spectroscopy of individual coal particles,” in Advances in Coal Spectroscopy, H. L. C. Meuzelaar, ed. (Plenum, New York, 1992), pp. 91–118.

D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverized coal particle composition,” Rep. SAND90-8586 (Sandia National Laboratories, Livermore, Calif., 1990).

P. M. Walsh, H. A. Johnsen, D. K. Ottesen, R. H. Christy, T. P. McGrath, B. Zimperman, S. E. Wien, G. C. England, “Measurements of metallic elements in the exhaust from a stationary, natural-gas-fueled, lean-burn, spark-ignition engine using laser-induced breakdown spectroscopy and comparison with U.S. EPA Methods 201A and 202,” presented at the Air and Waste Management Association 94th Annual Conference, Orlando, Fla., 24–28 June 2001.

Panne, U.

U. Panne, R. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Appl. Spectrosc. 56, 375–380 (2002).
[CrossRef]

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 839–850 (2001).
[CrossRef]

Pecoraro, G.

R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).

Peng, L.

W. Flower, L. Peng, C. Woods, N. Bergan French, K. Hencken, H. Johnsen, R. Renzi, D. Trujillo, “A continuous emissions monitor for metals: field demonstration of a prototype probe,” Rep. SAND95-8540 (Sandia National Laboratories, Livermore, Calif., 1995).
[CrossRef]

Peng, L. W.

L. W. Peng, W. L. Flower, K. R. Hencken, H. A. Johnsen, R. F. Renzi, N. B. French, “A laser-based technique for continuously monitoring metal emissions from thermal waste treatment units,” Process Control Qual. 7, 39–49 (1995).

W. L. Flower, L. W. Peng, M. P. Bonin, N. B. French, H. A. Johnsen, D. K. Ottesen, R. F. Renzi, L. V. Westbrook, “A laser-based technique to continuously monitor metal aerosol emissions,” Fuel Process. Technol. 39, 277–284 (1994).
[CrossRef]

Priebe, S.

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

Quan, F.

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

Radziemski, L. J.

L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).
[CrossRef]

D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission-spectroscopy for in-situ real-time monitoring of pulverized coal particle composition,” Energy Fuels 5, 304–312 (1991).
[CrossRef]

D. K. Ottesen, J. C. F. Wang, L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Appl. Spectrosc. 43, 967–976 (1989).
[CrossRef]

D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverized coal particle composition,” Rep. SAND90-8586 (Sandia National Laboratories, Livermore, Calif., 1990).

D. K. Ottesen, J. C. F. Wang, L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Rep. SAND88-8862 (Sandia National Laboratories, Livermore, Calif., 1988).

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.

D. A. Cremers, L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, eds. (Marcel Dekker, New York, 1987), pp. 351–414.

Renzi, R.

W. Flower, L. Peng, C. Woods, N. Bergan French, K. Hencken, H. Johnsen, R. Renzi, D. Trujillo, “A continuous emissions monitor for metals: field demonstration of a prototype probe,” Rep. SAND95-8540 (Sandia National Laboratories, Livermore, Calif., 1995).
[CrossRef]

Renzi, R. F.

L. W. Peng, W. L. Flower, K. R. Hencken, H. A. Johnsen, R. F. Renzi, N. B. French, “A laser-based technique for continuously monitoring metal emissions from thermal waste treatment units,” Process Control Qual. 7, 39–49 (1995).

W. L. Flower, L. W. Peng, M. P. Bonin, N. B. French, H. A. Johnsen, D. K. Ottesen, R. F. Renzi, L. V. Westbrook, “A laser-based technique to continuously monitor metal aerosol emissions,” Fuel Process. Technol. 39, 277–284 (1994).
[CrossRef]

W. L. Flower, R. F. Renzi, “Method and apparatus for calibrating a particle emissions monitor,” U.S. patent5,777,734 (7July1998).

Rigsby, J.

C. Su, S. Feng, J. Singh, F. Yuen, J. Rigsby, D. Monts, R. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Ross, J. R.

J. R. Ross, S. R. Birtola, H. A. Johnsen, “Purge and cooling for the LIBS optical probe,” U.S. patent application (26March2002).

D. W. Hahn, K. R. Hencken, H. A. Johnsen, J. R. Ross, P. M. Walsh, R. H. Christy, S. D. Ziman, “Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production,” in Emission Inventory: Living in a Global Environment (Air and Waste Management Association, Sewickley, Pa., 1999), Vol. II, pp. 1175–1193.

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Recent trends and the future of laser-induced plasma spectroscopy,” TrAC Trends Anal. Chem. 17, 453–461 (1998).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Ryan, J. V.

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

Sabsabi, M.

V. Detalle, R. Heon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Schmieder, R. W.

R. W. Schmieder, “Techniques and applications of laser spark spectroscopy,” Rep. SAND83-8618 (Sandia National Laboratories, Livermore, Calif., 1983).

R. W. Schmieder, “Combustion applications of laser-induced breakdown spectroscopy,” Rep. SAND81-8886 (Sandia National Laboratories, Livermore, Calif., 1981).

Singh, J.

C. Su, S. Feng, J. Singh, F. Yuen, J. Rigsby, D. Monts, R. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Singh, J. P.

Sloss, L. L.

L. L. Sloss, R. M. Davidson, “Rapid analysis of trace elements in coal utilisation,” Rep. IEA CCC/46 (International Energy Agency Coal Research, London, 2001).

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Recent trends and the future of laser-induced plasma spectroscopy,” TrAC Trends Anal. Chem. 17, 453–461 (1998).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Smith, G. P.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
[CrossRef]

Sneddon, J.

K. Song, Y. I. Lee, J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

K. Song, Y. I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

Song, K.

K. Song, Y. I. Lee, J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

K. Song, Y. I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

Spear, K. E.

R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).

St-Onge, L.

V. Detalle, R. Heon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Su, C.

C. Su, S. Feng, J. Singh, F. Yuen, J. Rigsby, D. Monts, R. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Theisen, M.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 839–850 (2001).
[CrossRef]

Thy, P.

B. M. Jenkins, P. Thy, S. Q. Turn, L. G. Blevins, L. A. Jakeway, R. B. Williams, B. C. Wu, L. L. Baxter, “Composition and microstructure of ash deposits from co-firing biomass and coal,” in BioEnergy 2002, J. Crockett, C. L. Peterson, eds. (Omnipress, Boise, Idaho, 2002), paper 2107.

Tong, S. S. C.

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

Trujillo, D.

W. Flower, L. Peng, C. Woods, N. Bergan French, K. Hencken, H. Johnsen, R. Renzi, D. Trujillo, “A continuous emissions monitor for metals: field demonstration of a prototype probe,” Rep. SAND95-8540 (Sandia National Laboratories, Livermore, Calif., 1995).
[CrossRef]

Turn, S. Q.

B. M. Jenkins, P. Thy, S. Q. Turn, L. G. Blevins, L. A. Jakeway, R. B. Williams, B. C. Wu, L. L. Baxter, “Composition and microstructure of ash deposits from co-firing biomass and coal,” in BioEnergy 2002, J. Crockett, C. L. Peterson, eds. (Omnipress, Boise, Idaho, 2002), paper 2107.

Uhl, A.

A. Uhl, K. Loebe, L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
[CrossRef]

Wallis, F. J.

Walsh, P. M.

R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

P. M. Walsh, H. A. Johnsen, D. K. Ottesen, R. H. Christy, T. P. McGrath, B. Zimperman, S. E. Wien, G. C. England, “Measurements of metallic elements in the exhaust from a stationary, natural-gas-fueled, lean-burn, spark-ignition engine using laser-induced breakdown spectroscopy and comparison with U.S. EPA Methods 201A and 202,” presented at the Air and Waste Management Association 94th Annual Conference, Orlando, Fla., 24–28 June 2001.

D. W. Hahn, K. R. Hencken, H. A. Johnsen, J. R. Ross, P. M. Walsh, R. H. Christy, S. D. Ziman, “Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production,” in Emission Inventory: Living in a Global Environment (Air and Waste Management Association, Sewickley, Pa., 1999), Vol. II, pp. 1175–1193.

P. M. Walsh, R. D. Moore, J. Neufeld, L. Lemings, J. T. Brown, K. T. Wu, “Sodium volatilization and silica refractory corrosion in an oxygen/natural-gas-fired soda-lime-silica glass melting furnace,” in Proceedings of the XIX International Congress on Glass (Society of Glass Technology, Sheffield, UK, 2001), Vol. 2, Extended Abstracts, pp. 134–135.

Wang, J. C. F.

D. K. Ottesen, J. C. F. Wang, L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Appl. Spectrosc. 43, 967–976 (1989).
[CrossRef]

D. K. Ottesen, J. C. F. Wang, L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Rep. SAND88-8862 (Sandia National Laboratories, Livermore, Calif., 1988).

Westbrook, L. V.

W. L. Flower, L. W. Peng, M. P. Bonin, N. B. French, H. A. Johnsen, D. K. Ottesen, R. F. Renzi, L. V. Westbrook, “A laser-based technique to continuously monitor metal aerosol emissions,” Fuel Process. Technol. 39, 277–284 (1994).
[CrossRef]

Wien, S. E.

P. M. Walsh, H. A. Johnsen, D. K. Ottesen, R. H. Christy, T. P. McGrath, B. Zimperman, S. E. Wien, G. C. England, “Measurements of metallic elements in the exhaust from a stationary, natural-gas-fueled, lean-burn, spark-ignition engine using laser-induced breakdown spectroscopy and comparison with U.S. EPA Methods 201A and 202,” presented at the Air and Waste Management Association 94th Annual Conference, Orlando, Fla., 24–28 June 2001.

Williams, R. B.

B. M. Jenkins, P. Thy, S. Q. Turn, L. G. Blevins, L. A. Jakeway, R. B. Williams, B. C. Wu, L. L. Baxter, “Composition and microstructure of ash deposits from co-firing biomass and coal,” in BioEnergy 2002, J. Crockett, C. L. Peterson, eds. (Omnipress, Boise, Idaho, 2002), paper 2107.

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Recent trends and the future of laser-induced plasma spectroscopy,” TrAC Trends Anal. Chem. 17, 453–461 (1998).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Woods, C.

W. Flower, L. Peng, C. Woods, N. Bergan French, K. Hencken, H. Johnsen, R. Renzi, D. Trujillo, “A continuous emissions monitor for metals: field demonstration of a prototype probe,” Rep. SAND95-8540 (Sandia National Laboratories, Livermore, Calif., 1995).
[CrossRef]

Wu, B. C.

B. M. Jenkins, P. Thy, S. Q. Turn, L. G. Blevins, L. A. Jakeway, R. B. Williams, B. C. Wu, L. L. Baxter, “Composition and microstructure of ash deposits from co-firing biomass and coal,” in BioEnergy 2002, J. Crockett, C. L. Peterson, eds. (Omnipress, Boise, Idaho, 2002), paper 2107.

Wu, K. T.

P. M. Walsh, R. D. Moore, J. Neufeld, L. Lemings, J. T. Brown, K. T. Wu, “Sodium volatilization and silica refractory corrosion in an oxygen/natural-gas-fired soda-lime-silica glass melting furnace,” in Proceedings of the XIX International Congress on Glass (Society of Glass Technology, Sheffield, UK, 2001), Vol. 2, Extended Abstracts, pp. 134–135.

Yalcin, S.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
[CrossRef]

Yang, N.

R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).

Yoshikawa, N.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Yueh, F. Y.

Yuen, F.

C. Su, S. Feng, J. Singh, F. Yuen, J. Rigsby, D. Monts, R. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Zhang, H.

Zhang, H. S.

H. S. Zhang, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
[CrossRef]

J. P. Singh, F. Y. Yueh, H. S. Zhang, R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).

Ziman, S. D.

D. W. Hahn, K. R. Hencken, H. A. Johnsen, J. R. Ross, P. M. Walsh, R. H. Christy, S. D. Ziman, “Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production,” in Emission Inventory: Living in a Global Environment (Air and Waste Management Association, Sewickley, Pa., 1999), Vol. II, pp. 1175–1193.

R. H. Christy, S. D. Ziman, “Fine particulate matter: how dirty is clean combustion?” presented at the Fourth Society of Petroleum Engineers/Environmental Protection Agency Exploration and Production Environmental Conference, Austin, Tex., 28 February-3 March 1999.

Zimperman, B.

P. M. Walsh, H. A. Johnsen, D. K. Ottesen, R. H. Christy, T. P. McGrath, B. Zimperman, S. E. Wien, G. C. England, “Measurements of metallic elements in the exhaust from a stationary, natural-gas-fueled, lean-burn, spark-ignition engine using laser-induced breakdown spectroscopy and comparison with U.S. EPA Methods 201A and 202,” presented at the Air and Waste Management Association 94th Annual Conference, Orlando, Fla., 24–28 June 2001.

Aerosol Sci. Technol. (2)

M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
[CrossRef]

D. W. Hahn, M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30–48 (2000).
[CrossRef]

Anal. Chim. Acta (1)

P. Lindblom, “New compact echelle spectrographs with multichannel time-resolved recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
[CrossRef]

Anal. Lett. (1)

J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

D. W. Hahn, “Laser-induced breakdown spectroscopy for sizing and elemental analysis of discrete aerosol particles,” Appl. Phys. Lett. 72, 2960–2962 (1998).
[CrossRef]

Appl. Spectrosc. (10)

D. K. Ottesen, “Detection of contaminants on electronic microcircuit substrates by laser spark emission spectroscopy,” Appl. Spectrosc. 46, 593–596 (1992).
[CrossRef]

L. Dudragne, P. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
[CrossRef]

A. Gonzalez, M. Ortiz, J. Campos, “Determination of sulfur-content in steel by laser-produced plasma-atomic emission-spectroscopy,” Appl. Spectrosc. 49, 1632–1635 (1995).
[CrossRef]

H. Zhang, J. P. Singh, F. Y. Yueh, R. L. Cook, “Laser-induced breakdown spectra in a coal-fired MHD facility,” Appl. Spectrosc. 49, 1617–1623 (1995).
[CrossRef]

D. K. Ottesen, J. C. F. Wang, L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Appl. Spectrosc. 43, 967–976 (1989).
[CrossRef]

B. L. Chadwick, D. Body, “Development and commercial evaluation of laser-induced breakdown spectroscopy chemical analysis technology in the coal power generation industry,” Appl. Spectrosc. 56, 70–74 (2002).
[CrossRef]

F. J. Wallis, B. L. Chadwick, R. J. S. Morrison, “Analysis of lignite using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 54, 1231–1235 (2000).
[CrossRef]

U. Panne, R. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Appl. Spectrosc. 56, 375–380 (2002).
[CrossRef]

B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
[CrossRef]

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1844 (1997).
[CrossRef]

Appl. Spectrosc. Rev. (2)

K. Song, Y. I. Lee, J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

K. Song, Y. I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

Ceram. Eng. Sci. Proc. (2)

S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).

R. D. Moore, J. T. Brown, “Conversion of a large container furnace from regenerative firing to direct oxy-fuel combustion,” Ceram. Eng. Sci. Proc. 13, 18–24 (1992).
[CrossRef]

Crit. Rev. Anal. Chem. (2)

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

Energy (1)

D. R. Hardesty, D. K. Ottesen, “Optical diagnostics for in situ measurements in combustion environments containing coal particles,” Energy 12, 813–836 (1987).
[CrossRef]

Energy Fuels (1)

D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission-spectroscopy for in-situ real-time monitoring of pulverized coal particle composition,” Energy Fuels 5, 304–312 (1991).
[CrossRef]

Fuel Process. Technol. (1)

W. L. Flower, L. W. Peng, M. P. Bonin, N. B. French, H. A. Johnsen, D. K. Ottesen, R. F. Renzi, L. V. Westbrook, “A laser-based technique to continuously monitor metal aerosol emissions,” Fuel Process. Technol. 39, 277–284 (1994).
[CrossRef]

Glass Sci. Technol. (1)

R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).

Glass Technol. (1)

C. Su, S. Feng, J. Singh, F. Yuen, J. Rigsby, D. Monts, R. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Hazard. Waste Hazard. Mater. (1)

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
[CrossRef]

Meas. Sci. Technol. (1)

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13, R103–R115 (2002).
[CrossRef]

Microchem. J. (2)

L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).
[CrossRef]

X. D. Hou, B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
[CrossRef]

Process Control Qual. (2)

J. P. Singh, F. Y. Yueh, H. S. Zhang, R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).

L. W. Peng, W. L. Flower, K. R. Hencken, H. A. Johnsen, R. F. Renzi, N. B. French, “A laser-based technique for continuously monitoring metal emissions from thermal waste treatment units,” Process Control Qual. 7, 39–49 (1995).

Prog. Energy Combust. Sci. (1)

P. Monkhouse, “On-line diagnostic methods for metal species in industrial process gas,” Prog. Energy Combust. Sci. 28, 331–381 (2002).
[CrossRef]

Rev. Sci. Instrum. (2)

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

D. Body, B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
[CrossRef]

Spectrochim. Acta Part B (7)

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

H. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

H. Becker-Ross, S. Florek, “Echelle spectrometers and charge-coupled devices,” Spectrochim. Acta Part B 52, 1367–1375 (1997).
[CrossRef]

A. Uhl, K. Loebe, L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
[CrossRef]

V. Detalle, R. Heon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 839–850 (2001).
[CrossRef]

S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
[CrossRef]

TrAC Trends Anal. Chem. (1)

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Recent trends and the future of laser-induced plasma spectroscopy,” TrAC Trends Anal. Chem. 17, 453–461 (1998).
[CrossRef]

Waste Manage. (2)

S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

Other (20)

D. W. Hahn, K. R. Hencken, H. A. Johnsen, “Performance testing of a laser-induced breakdown spectroscopy (LIBS) based continuous metal emissions monitor at a pyrolytic waste treatment facility,” Rep. SAND97-8270 (Sandia National Laboratories, Livermore, Calif., 1997).
[CrossRef]

D. K. Ottesen, “Laser spark emission spectroscopy of individual coal particles,” in Advances in Coal Spectroscopy, H. L. C. Meuzelaar, ed. (Plenum, New York, 1992), pp. 91–118.

D. K. Ottesen, L. L. Baxter, L. J. Radziemski, J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverized coal particle composition,” Rep. SAND90-8586 (Sandia National Laboratories, Livermore, Calif., 1990).

D. K. Ottesen, J. C. F. Wang, L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Rep. SAND88-8862 (Sandia National Laboratories, Livermore, Calif., 1988).

L. L. Sloss, R. M. Davidson, “Rapid analysis of trace elements in coal utilisation,” Rep. IEA CCC/46 (International Energy Agency Coal Research, London, 2001).

D. R. Hardesty, “An assessment of optical diagnostics for in situ measurements in high temperature coal combustion and conversion flows,” Rep. SAND84-8724 (Sandia National Laboratories, Livermore, Calif., 1984).

D. W. Hahn, K. R. Hencken, H. A. Johnsen, W. L. Flower, “Method of improving instrument response,” U.S. patent6,061,641 (9May2000).

D. W. Hahn, K. R. Hencken, H. A. Johnsen, J. R. Ross, P. M. Walsh, R. H. Christy, S. D. Ziman, “Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production,” in Emission Inventory: Living in a Global Environment (Air and Waste Management Association, Sewickley, Pa., 1999), Vol. II, pp. 1175–1193.

P. M. Walsh, H. A. Johnsen, D. K. Ottesen, R. H. Christy, T. P. McGrath, B. Zimperman, S. E. Wien, G. C. England, “Measurements of metallic elements in the exhaust from a stationary, natural-gas-fueled, lean-burn, spark-ignition engine using laser-induced breakdown spectroscopy and comparison with U.S. EPA Methods 201A and 202,” presented at the Air and Waste Management Association 94th Annual Conference, Orlando, Fla., 24–28 June 2001.

W. Flower, L. Peng, C. Woods, N. Bergan French, K. Hencken, H. Johnsen, R. Renzi, D. Trujillo, “A continuous emissions monitor for metals: field demonstration of a prototype probe,” Rep. SAND95-8540 (Sandia National Laboratories, Livermore, Calif., 1995).
[CrossRef]

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.

D. A. Cremers, L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, eds. (Marcel Dekker, New York, 1987), pp. 351–414.

J. R. Ross, S. R. Birtola, H. A. Johnsen, “Purge and cooling for the LIBS optical probe,” U.S. patent application (26March2002).

R. W. Schmieder, “Techniques and applications of laser spark spectroscopy,” Rep. SAND83-8618 (Sandia National Laboratories, Livermore, Calif., 1983).

R. W. Schmieder, “Combustion applications of laser-induced breakdown spectroscopy,” Rep. SAND81-8886 (Sandia National Laboratories, Livermore, Calif., 1981).

K. R. Hencken, W. L. Flower, “Optical probe,” U.S. patent5,953,120 (14September1999).

R. H. Christy, S. D. Ziman, “Fine particulate matter: how dirty is clean combustion?” presented at the Fourth Society of Petroleum Engineers/Environmental Protection Agency Exploration and Production Environmental Conference, Austin, Tex., 28 February-3 March 1999.

W. L. Flower, R. F. Renzi, “Method and apparatus for calibrating a particle emissions monitor,” U.S. patent5,777,734 (7July1998).

B. M. Jenkins, P. Thy, S. Q. Turn, L. G. Blevins, L. A. Jakeway, R. B. Williams, B. C. Wu, L. L. Baxter, “Composition and microstructure of ash deposits from co-firing biomass and coal,” in BioEnergy 2002, J. Crockett, C. L. Peterson, eds. (Omnipress, Boise, Idaho, 2002), paper 2107.

P. M. Walsh, R. D. Moore, J. Neufeld, L. Lemings, J. T. Brown, K. T. Wu, “Sodium volatilization and silica refractory corrosion in an oxygen/natural-gas-fired soda-lime-silica glass melting furnace,” in Proceedings of the XIX International Congress on Glass (Society of Glass Technology, Sheffield, UK, 2001), Vol. 2, Extended Abstracts, pp. 134–135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of the LIBS system used for the power generation boiler and the glass furnace.

Fig. 2
Fig. 2

Design drawing of the end of the long-extension LIBS probe.

Fig. 3
Fig. 3

Photograph of the LIBS long-extension furnace sampling probe, with the Nd:YAG laser and associated umbilical cords to the right and the thermoprobe sampling port on the left. A soot blower is housed to the right of the probe.

Fig. 4
Fig. 4

Measured single-shot Na line intensity during sampling in recovery boiler 1. Measurements were made with an OMA.

Fig. 5
Fig. 5

Near-superheater echelle LIBS spectrum for combustion of coal and oil in a power generation boiler. Species’ peak locations are identified with numbers expressed in nanometers.

Fig. 6
Fig. 6

Calibration curves for several elements obtained with an echelle spectrometer.

Fig. 7
Fig. 7

LIBS-measured concentrations during fiber cane-bagasse-coal-oil cofiring for Test 3 in the power generation boiler. The echelle spectrometer was used to produce simultaneous measurements of eight elements.

Fig. 8
Fig. 8

Average element mass concentrations measured by LIBS with an echelle spectrometer during power generation boiler testing with various fuel combinations. The vertical bars represent standard deviations. Test 1 used coal and oil, Test 2 used coal, bagasse, and oil, and Test 3 used coal, bagasse, fiber cane, and oil.

Fig. 9
Fig. 9

Typical echelle LIBS spectrum from day 2 in the glass furnace. Species’ peak locations are identified with numbers expressed in nanometers.

Fig. 10
Fig. 10

Measured Na concentration-time traces for 3 days of testing in the container glass-melting furnace. The echelle spectrometer was used.

Fig. 11
Fig. 11

Correlation between Na concentration measured with the echelle system and nearby measured wall temperature.

Fig. 12
Fig. 12

One-thousand-shot LIBS spectrum obtained with the PI ICCD linear spectrometer from a recovery boiler. Identified species and their peak emission wavelengths are given in nanometers.

Fig. 13
Fig. 13

Single-shot LIBS peak areas measured in the 250-nm spectral window in recovery boiler 2 with the PI ICCD linear spectrometer. The areas have been normalized by local baseline emission strength to correct for variations in the spark strength and detection efficiency. The Si and Mn peak areas have been offset from B for clear display.

Fig. 14
Fig. 14

One-thousand-shot LIBS spectrum in recovery boiler 2 as recorded on an echelle spectrometer. Identified lines (including LIBS recombination products) are labeled, together with the spectral location of the peak line emission in nanometers.

Tables (3)

Tables Icon

Table 1 Selected Applications of LIBS in Industrial Combustors

Tables Icon

Table 2 Conditions for Field Tests and Calibrations

Tables Icon

Table 3 Measurement Location and Detection Schemes for Field Tests

Metrics