Abstract

Nanosecond and femtosecond laser pulses were combined in an orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS) configuration. Even without full optimization of interpulse alignment, ablation focus, large signal, signal-to-noise ratio, and signal-to-background ratio enhancements were observed for both copper and aluminum targets. Despite the preliminary nature of this study, these results have significant implications in the attempt to explain the sources of dual-pulse LIBS enhancements.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Brech, L. Cross, “Optical microemission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).
  2. D. Anglos, S. Couris, C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025–1030 (1997).
    [CrossRef]
  3. D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).
  4. D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
    [CrossRef]
  5. K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197–198, 156–163 (2002).
    [CrossRef]
  6. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
    [CrossRef]
  7. J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
    [CrossRef]
  8. L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
    [CrossRef]
  9. R. Nyga, W. Neu, “Double-pulse technique for optical-emission spectroscopy of ablation plasmas of samples in liquids,” Opt. Lett. 18, 747–749 (1993).
    [CrossRef] [PubMed]
  10. A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
    [CrossRef]
  11. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
    [CrossRef]
  12. G. A. Theriault, S. H. Lieberman, “Field deployment of a LIBS probe for rapid delineation of metals in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 83–89 (1996).
    [CrossRef]
  13. G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998).
    [CrossRef]
  14. B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
    [CrossRef]
  15. B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997).
    [CrossRef]
  16. B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
    [CrossRef]
  17. C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
    [CrossRef]
  18. C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).
  19. R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999).
    [CrossRef]
  20. S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
    [CrossRef]
  21. A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
    [CrossRef]
  22. M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
    [CrossRef]
  23. P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
    [CrossRef]
  24. R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).
  25. V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
    [CrossRef]
  26. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
    [CrossRef]
  27. J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
    [CrossRef]
  28. M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
    [CrossRef]
  29. Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
    [CrossRef]
  30. C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
    [CrossRef]
  31. L. M. Cabalín, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
    [CrossRef]
  32. P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001).
    [CrossRef]
  33. J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001).
    [CrossRef]
  34. A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001).
    [CrossRef]
  35. V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
    [CrossRef]
  36. Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
    [CrossRef]
  37. L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
    [CrossRef]
  38. M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
    [CrossRef]
  39. V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
    [CrossRef]
  40. L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
    [CrossRef]
  41. M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
    [CrossRef]
  42. O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras Ureña, A. González, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
    [CrossRef]
  43. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).
  44. O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).
  45. C. C. Garcia, J. M. Vadillo, S. Palanco, J. Ruiz, J. J. Laserna, “Comparative analysis of layered materials using laser-induced plasma spectrometry and laser-ionization time-of-flight mass spectrometry,” Spectrochim. Acta Part B 56, 923–931 (2001).
    [CrossRef]
  46. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933–945 (2001).
    [CrossRef]
  47. H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
    [CrossRef]
  48. L. J. Radziemski, D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  49. G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 569–586 (2001).
    [CrossRef]
  50. A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
    [CrossRef]
  51. A. Ciucci, M. Corsi, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
    [CrossRef]
  52. I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
    [CrossRef]
  53. G. Galbacs, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
    [CrossRef]
  54. L. St.-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
    [CrossRef]
  55. D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
    [CrossRef]
  56. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. A. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
    [CrossRef] [PubMed]
  57. D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
    [CrossRef]
  58. R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch ND-YAG laser-pulses,” J. Phys. D 28, 2181–2187 (1995).
    [CrossRef]
  59. S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
    [CrossRef] [PubMed]
  60. A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25–39 (1997).
    [CrossRef]
  61. D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
    [CrossRef]
  62. L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
    [CrossRef]
  63. D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
    [CrossRef]
  64. V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
    [CrossRef]
  65. J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a 2nd pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
    [CrossRef]
  66. D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS: why are two lasers better than one?,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE3853, 385–392 (1999).
    [CrossRef]
  67. D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
    [CrossRef]
  68. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
    [CrossRef]
  69. Y. I. Lee, J. Sneddon, “Spatial and temporal characteristics of an excimer laser-induced lead plasma emission,” Spectrosc. Lett. 29, 1157–1171 (1996).
    [CrossRef]

2002 (2)

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197–198, 156–163 (2002).
[CrossRef]

L. St.-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

2001 (27)

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. A. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

G. Galbacs, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
[CrossRef]

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras Ureña, A. González, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

C. C. Garcia, J. M. Vadillo, S. Palanco, J. Ruiz, J. J. Laserna, “Comparative analysis of layered materials using laser-induced plasma spectrometry and laser-ionization time-of-flight mass spectrometry,” Spectrochim. Acta Part B 56, 923–931 (2001).
[CrossRef]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933–945 (2001).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
[CrossRef]

G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 569–586 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
[CrossRef]

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
[CrossRef]

M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
[CrossRef]

L. M. Cabalín, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001).
[CrossRef]

J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001).
[CrossRef]

A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

2000 (13)

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
[CrossRef]

S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
[CrossRef]

M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

1999 (7)

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

A. Ciucci, M. Corsi, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999).
[CrossRef]

D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

1998 (3)

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998).
[CrossRef]

L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

1997 (2)

A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25–39 (1997).
[CrossRef]

D. Anglos, S. Couris, C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025–1030 (1997).
[CrossRef]

1996 (4)

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).

Y. I. Lee, J. Sneddon, “Spatial and temporal characteristics of an excimer laser-induced lead plasma emission,” Spectrosc. Lett. 29, 1157–1171 (1996).
[CrossRef]

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

1995 (2)

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch ND-YAG laser-pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

1993 (1)

1991 (1)

1984 (1)

1962 (1)

F. Brech, L. Cross, “Optical microemission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).

Aguilera, J. A.

Amador-Hernández, J.

J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001).
[CrossRef]

Angel, S. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. A. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS: why are two lasers better than one?,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE3853, 385–392 (1999).
[CrossRef]

Anglos, D.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197–198, 156–163 (2002).
[CrossRef]

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).

D. Anglos, S. Couris, C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025–1030 (1997).
[CrossRef]

Anzano, J. M.

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

Aragón, C.

Balas, C.

D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).

Barbini, R.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

Barrette, L.

L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
[CrossRef]

Bäuerle, D.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Becker, C.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933–945 (2001).
[CrossRef]

Beddows, D. C. S.

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras Ureña, A. González, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

Berg, M. A.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. A. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

Betancourt, P. P.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197–198, 156–163 (2002).
[CrossRef]

Bette, H.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Bicchieri, M.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

Bodensteiner, S.

G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998).
[CrossRef]

Bonarou, A.

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

Botheroyd, I. M.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Brech, F.

F. Brech, L. Cross, “Optical microemission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).

Brust, J.

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Burgio, L.

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

Cabalín, L. M.

L. M. Cabalín, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

Cáceras Ureña, J. O.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras Ureña, A. González, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

Cáceres, J. O.

J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
[CrossRef]

Capitelli, F.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

Capitelli, M.

G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 569–586 (2001).
[CrossRef]

Casavola, A.

G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 569–586 (2001).
[CrossRef]

Castillejo, M.

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

Cielo, P.

L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Ciucci, A.

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

A. Ciucci, M. Corsi, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Clark, R. J. H.

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

Colao, F.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

Colonna, G.

G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 569–586 (2001).
[CrossRef]

Corbett, R. E.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Corsi, M.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

A. Ciucci, M. Corsi, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Couris, S.

Cremers, D. A.

Cristoforetti, G.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

Cross, L.

F. Brech, L. Cross, “Optical microemission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).

Cullum, B. M.

B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997).
[CrossRef]

Davies, C. M.

C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

De Giacomo, A.

A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001).
[CrossRef]

De Pascale, O.

A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001).
[CrossRef]

Detalle, V.

L. St.-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Doulgeridis, M.

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

Eland, K. L.

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. A. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS: why are two lasers better than one?,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE3853, 385–392 (1999).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
[CrossRef]

Evans, C. P.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Falk, H.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933–945 (2001).
[CrossRef]

Fantoni, R.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

Fernández-Romero, J. M.

J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001).
[CrossRef]

Ferrence, S. C.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197–198, 156–163 (2002).
[CrossRef]

Ferris, M. J.

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
[CrossRef]

A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25–39 (1997).
[CrossRef]

Fichet, P.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Fotakis, C.

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).

D. Anglos, S. Couris, C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025–1030 (1997).
[CrossRef]

French, P. D.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Galbacs, G.

G. Galbacs, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
[CrossRef]

Garcia, C. C.

C. C. Garcia, J. M. Vadillo, S. Palanco, J. Ruiz, J. J. Laserna, “Comparative analysis of layered materials using laser-induced plasma spectrometry and laser-ionization time-of-flight mass spectrometry,” Spectrochim. Acta Part B 56, 923–931 (2001).
[CrossRef]

Gold, D. A.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. A. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

Gold, D. M.

González, A.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras Ureña, A. González, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

González Ureña, A.

J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
[CrossRef]

Goode, S. R.

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Gornushkin, I. B.

G. Galbacs, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
[CrossRef]

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

Gruber, J.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Harmon, R. S.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Heitz, J.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Héon, R.

V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Hilbk-Kortenbruck, F.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933–945 (2001).
[CrossRef]

Hiraga, H.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Ito, Y.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Kaiser, J.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras Ureña, A. González, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

Kaneko, K.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Kim, T.

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

Knight, A. K.

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Kukhlevesky, S. V.

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Lai, T.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. A. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

Laserna, J. J.

C. C. Garcia, J. M. Vadillo, S. Palanco, J. Ruiz, J. J. Laserna, “Comparative analysis of layered materials using laser-induced plasma spectrometry and laser-ionization time-of-flight mass spectrometry,” Spectrochim. Acta Part B 56, 923–931 (2001).
[CrossRef]

P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001).
[CrossRef]

L. M. Cabalín, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

Lawson, S.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Lazic, V.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

Lee, G.

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

Lee, K.

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

Lee, Y. I.

Y. I. Lee, J. Sneddon, “Spatial and temporal characteristics of an excimer laser-induced lead plasma emission,” Spectrosc. Lett. 29, 1157–1171 (1996).
[CrossRef]

Leis, F.

Lieberman, S. H.

G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998).
[CrossRef]

G. A. Theriault, S. H. Lieberman, “Field deployment of a LIBS probe for rapid delineation of metals in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 83–89 (1996).
[CrossRef]

Liska, M.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras Ureña, A. González, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

Loree, T. R.

Lucena, P.

P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001).
[CrossRef]

Luque de Castro, M. D.

J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001).
[CrossRef]

Marquardt, B. J.

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997).
[CrossRef]

Martin, M.

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

Mateo, M.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197–198, 156–163 (2002).
[CrossRef]

Mauchien, P.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

McNesby, K. L.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Melessanaki, K.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197–198, 156–163 (2002).
[CrossRef]

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

Miziolek, A. W.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Mönch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Montgomery, D. J.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Morris, G. W.

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

Moulin, C.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Nakamura, S.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Nardone, M.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

Neu, W.

Neuhauser, R. E.

R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999).
[CrossRef]

Niemax, K.

Niessner, R.

R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999).
[CrossRef]

Noll, R.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933–945 (2001).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch ND-YAG laser-pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Nyga, R.

Palanco, S.

C. C. Garcia, J. M. Vadillo, S. Palanco, J. Ruiz, J. J. Laserna, “Comparative analysis of layered materials using laser-induced plasma spectrometry and laser-ionization time-of-flight mass spectrometry,” Spectrochim. Acta Part B 56, 923–931 (2001).
[CrossRef]

S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

Palleschi, S.

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

A. Ciucci, M. Corsi, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Palleschi, V.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

Palucci, A.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

Panne, U.

R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999).
[CrossRef]

Peñalba, F.

Peter, L.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Pichahchy, A. E.

A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25–39 (1997).
[CrossRef]

Radziemski, L. J.

Ramaseder, N.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Rastelli, S.

A. Ciucci, M. Corsi, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

Ruiz, J.

C. C. Garcia, J. M. Vadillo, S. Palanco, J. Ruiz, J. J. Laserna, “Comparative analysis of layered materials using laser-induced plasma spectrometry and laser-ionization time-of-flight mass spectrometry,” Spectrochim. Acta Part B 56, 923–931 (2001).
[CrossRef]

Ruíz-Medina, A.

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

Russo, P. A.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

Sabsabi, M.

L. St.-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Salvetti, A.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

A. Ciucci, M. Corsi, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

Samek, O.

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras Ureña, A. González, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

Sattmann, R.

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch ND-YAG laser-pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Scherbarth, N. L.

Sdorra, W.

Shakhatov, V. A.

A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001).
[CrossRef]

Shaw, T. J.

B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997).
[CrossRef]

Silva, D.

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

Singh, D. P.

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

A. Ciucci, M. Corsi, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Smith, B.

M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
[CrossRef]

Smith, B. W.

M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
[CrossRef]

G. Galbacs, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
[CrossRef]

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
[CrossRef]

Sneddon, J.

Y. I. Lee, J. Sneddon, “Spatial and temporal characteristics of an excimer laser-induced lead plasma emission,” Spectrosc. Lett. 29, 1157–1171 (1996).
[CrossRef]

Sodo, A.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

Sone, K.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

St.-Onge, L.

L. St.-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Strasser, H.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Stratis, D. N.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. A. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS: why are two lasers better than one?,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE3853, 385–392 (1999).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
[CrossRef]

Stratoudaki, T.

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

Sturm, V.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch ND-YAG laser-pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Sun, Q.

Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
[CrossRef]

M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
[CrossRef]

Sun, S.

M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
[CrossRef]

Telle, H. H.

J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras Ureña, A. González, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Theriault, G. A.

G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998).
[CrossRef]

G. A. Theriault, S. H. Lieberman, “Field deployment of a LIBS probe for rapid delineation of metals in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 83–89 (1996).
[CrossRef]

Tognoni, E.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

A. Ciucci, M. Corsi, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Tornari, V.

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

Tornero López, J.

J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
[CrossRef]

Tran, M.

M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
[CrossRef]

Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
[CrossRef]

M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
[CrossRef]

Turmel, S.

L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
[CrossRef]

Uebbing, J.

Vadillo, J. M.

C. C. Garcia, J. M. Vadillo, S. Palanco, J. Ruiz, J. J. Laserna, “Comparative analysis of layered materials using laser-induced plasma spectrometry and laser-ionization time-of-flight mass spectrometry,” Spectrochim. Acta Part B 56, 923–931 (2001).
[CrossRef]

Vainos, N. A.

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

Wagner, J. F.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Wainner, R. T.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Whitehouse, A. I.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Williams, A. W.

C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).

Winefordner, J. D.

M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
[CrossRef]

G. Galbacs, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
[CrossRef]

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
[CrossRef]

M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
[CrossRef]

Wintjens, P.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933–945 (2001).
[CrossRef]

Wright, J.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Yang, M.

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

Yoon, Y.

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

Young, J.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Zafiropulos, V.

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

Am. Lab. (Shelton, Conn.) (1)

D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).

Anal. Chem. (3)

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

L. M. Cabalín, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Anal. Chim. Acta (5)

J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001).
[CrossRef]

R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999).
[CrossRef]

Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
[CrossRef]

M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
[CrossRef]

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Appl. Phys. A (2)

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

Appl. Spectrosc. (15)

F. Brech, L. Cross, “Optical microemission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
[CrossRef]

C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

A. Ciucci, M. Corsi, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a 2nd pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
[CrossRef]

D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

D. Anglos, S. Couris, C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025–1030 (1997).
[CrossRef]

Appl. Surf. Sci. (1)

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197–198, 156–163 (2002).
[CrossRef]

Field Anal. Chem. Technol. (1)

G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998).
[CrossRef]

Fresenius J. Anal. Chem. (2)

C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. A. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

J. Anal. At. Spectrom. (3)

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
[CrossRef]

J. Clin. Laser Med. Surg. (1)

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

J. Mol. Struct. (1)

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

J. Phys. D (1)

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch ND-YAG laser-pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Laser Part. Beams (1)

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

Microchem. J. (1)

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

Opt. Eng. (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Opt. Lasers Eng. (1)

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

Opt. Lett. (1)

Spectrochim. Acta (3)

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras Ureña, A. González, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

Spectrochim. Acta Part B (19)

C. C. Garcia, J. M. Vadillo, S. Palanco, J. Ruiz, J. J. Laserna, “Comparative analysis of layered materials using laser-induced plasma spectrometry and laser-ionization time-of-flight mass spectrometry,” Spectrochim. Acta Part B 56, 923–931 (2001).
[CrossRef]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933–945 (2001).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
[CrossRef]

G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 569–586 (2001).
[CrossRef]

A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
[CrossRef]

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
[CrossRef]

G. Galbacs, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
[CrossRef]

L. St.-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25–39 (1997).
[CrossRef]

L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Spectrosc. Lett. (1)

Y. I. Lee, J. Sneddon, “Spatial and temporal characteristics of an excimer laser-induced lead plasma emission,” Spectrosc. Lett. 29, 1157–1171 (1996).
[CrossRef]

Other (5)

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS: why are two lasers better than one?,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE3853, 385–392 (1999).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
[CrossRef]

B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997).
[CrossRef]

G. A. Theriault, S. H. Lieberman, “Field deployment of a LIBS probe for rapid delineation of metals in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 83–89 (1996).
[CrossRef]

L. J. Radziemski, D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Typical orthogonal dual-pulse LIBS setup. In this particular study, mirrors were used such that either laser 1 (ns) or laser 2 (fs) could be used to generate the air spark or to ablate material from the sample surface. ICCD, intensified CCD.

Fig. 2
Fig. 2

Four physical and temporal configurations are possible when we combine a ns spark and a fs spark in an orthogonal dual-pulse configuration. A fs air spark parallel to the sample surface can either precede A or follow B (a ns ablative pulse), or a ns air spark can precede C or follow D (a fs ablative pulse). All four dual-pulse configurations were examined in the current study.

Fig. 3
Fig. 3

Spectra for LIBS of copper by use of a fs ablative pulse (solid curve) and a fs ablative pulse with a ns air spark in the reheating mode (dashed curve, pulse configuration D). Although the baseline is comparable in both cases, the spectra were offset for clarity.

Fig. 4
Fig. 4

Dual-pulse LIBS signal enhancements for copper in all pulse configurations where dual-pulse enhancements were observed. Preablation spark configurations (A and C) are on the right side of the graph (positive values for interpulse delay) and reheating configurations (B and D) are on the left (negative values for interpulse delay). Error bars represent one standard deviation.

Fig. 5
Fig. 5

A, Typical craters from ns ablation with a fs air spark 5 µs prior to ablation; B, ns single-pulse ablation and; C, ns ablation followed 5 µs later by a fs reheating pulse. As in the case of ns/ns dual-pulse LIBS experiments, increased material ablation relative to both single-pulse ablation and ablation followed by a reheating pulse is apparent when a fs preablation air spark is used.

Fig. 6
Fig. 6

Spectra for LIBS of aluminum by use of a fs ablative pulse (solid curve), a fs ablative pulse followed by a ns reheating pulse (top dashed curve, pulse configuration D), and a fs ablative pulse preceded by a ns preablation air spark (bottom dotted curve, pulse configuration C). Although the baseline is comparable in all three cases, the spectra were offset for clarity.

Fig. 7
Fig. 7

Dual-pulse LIBS signal enhancements for aluminum in all pulse configurations where dual-pulse enhancements were observed. Preablation spark configuration C is on the right (positive values for interpulse delay) and reheating configuration D is on the left (negative values for interpulse delay). Error bars represent one standard deviation.

Metrics