Abstract

The purpose of this paper is to provide the reader with comparative information about two new commercial echelle spectrometers equipped with intensified CCD (ICCD) detectors for laser-induced breakdown spectroscopy analysis. We carried out a performance comparison between two commercial ICCD/echelle spectrometers [ESA 3000 (LLA Instruments GmbH, Berlin-Adlershof, Germany) and a Mechelle 7500 (Multichannel Instruments, Stockholm, Sweden)] for the determination of the concentrations of Be, Mg, Si, Mn, Fe, and Cu in the same Al alloy samples adopting the same experimental conditions. The results show that both systems, despite their differences in terms of resolution, have similar performance in terms of sensitivity and precision of measurements for these elements in an Al alloy matrix at least for the range of wavelength 280–400 nm studied in this work.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Harnly, R. E. Fields, “Solid-state array detectors for analytical spectrometry,” Appl. Spectrosc. 51, 334A–351A (1997).
    [CrossRef]
  2. F. M. Pennebaker, D. A. Jones, C. A. Gresham, R. W. Williams, R. E. Simon, M. F. Schappert, M. B. Denton, “Spectroscopic instrumentation in the 21st century: excitement at the horizon,” J. Anal. At. Spectrom. 13, 821–827 (1998).
    [CrossRef]
  3. Q. S. Hanley, C. W. Earle, F. M. Pennebaker, S. P. Madden, M. B. Denton, “Charge-transfer devices in analytical instrumentation,” Anal. Chem. 68, 661A–667A (1996).
    [CrossRef]
  4. M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran, S. B. Smith, “Evaluation of new array detector for atomic emission spectrometer for inductively coupled plasma atomic emission spectroscopy,” Appl. Spectrosc. 44, 1613–1620 (1990).
    [CrossRef]
  5. T. W. Barnard, M. J. Crockett, J. C. Ivaldi, P. L. Lundberg, “Design and evaluation of echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
    [CrossRef]
  6. T. W. Hieftje, “The future of plasma spectrochemical instrumentation,” J. Anal. At. Spectrom. 11, 613–622 (1996).
    [CrossRef]
  7. A. T. Zander, “Continual improvement of instrumentation for analytical spectrochemistry,” J. Anal. At. Spectrom. 13, 459–461 (1998).
    [CrossRef]
  8. A. T. Zander, R-L. Chien, C. B. Cooper, P. V. Wilson, “An image-mapped detector for simultaneous ICP-AES,” Anal. Chem. 71, 3332–3340 (1999).
    [CrossRef]
  9. S. Luan, R. G. Schleicher, M. J. Pilon, F. D. Bulman, G. N. Coleman, “An echelle polychromator for inductively coupled plasma optical emission spectroscopy with vacuum ultraviolet wavelength coverage and charge injection device detection,” Spectrochim. Acta Part B 57, 1143–1157 (2001).
    [CrossRef]
  10. L. Hiddemann, J. Uebbing, A. Ciocan, O. Dessenne, K. Niemax, “Simultaneous multielement analysis of solid samples by laser ablation-microwave-induced plasma optical emission spectrometry,” Anal. Chim. Acta 283, 152–159 (1994).
    [CrossRef]
  11. H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
    [CrossRef]
  12. H. Becker-Ross, S. V. Florek, “Echelle spectrometers and charge-coupled devices,” Spectrochim. Acta Part B 52, 1367–1375 (1997).
    [CrossRef]
  13. C. Haisch, U. Panne, R. Niessner, “Combination of an intensified charge coupled device with an echelle spectrograph for analysis of colloidal material by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 53, 1657–1667 (1998).
    [CrossRef]
  14. P. Lindblom, “New compact Echelle spectrographs with multichannel time-resolved recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
    [CrossRef]
  15. R. G. Scott, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
    [CrossRef]
  16. P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
    [CrossRef]
  17. S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
    [CrossRef]
  18. V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
    [CrossRef]
  19. B. Charfi, M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141–1153 (2002).
    [CrossRef]
  20. Multichannel Instruments AB, Sweden, http://www.multichannel.se/ .
  21. Catalina Scientific Corporation, USA, http://www.catalinasci.com/ .
  22. LLA Instruments GmbH, Germany, http://www.lla.de/ .

2002 (1)

B. Charfi, M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141–1153 (2002).
[CrossRef]

2001 (4)

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

S. Luan, R. G. Schleicher, M. J. Pilon, F. D. Bulman, G. N. Coleman, “An echelle polychromator for inductively coupled plasma optical emission spectroscopy with vacuum ultraviolet wavelength coverage and charge injection device detection,” Spectrochim. Acta Part B 57, 1143–1157 (2001).
[CrossRef]

2000 (1)

R. G. Scott, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
[CrossRef]

1999 (2)

A. T. Zander, R-L. Chien, C. B. Cooper, P. V. Wilson, “An image-mapped detector for simultaneous ICP-AES,” Anal. Chem. 71, 3332–3340 (1999).
[CrossRef]

P. Lindblom, “New compact Echelle spectrographs with multichannel time-resolved recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
[CrossRef]

1998 (4)

C. Haisch, U. Panne, R. Niessner, “Combination of an intensified charge coupled device with an echelle spectrograph for analysis of colloidal material by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 53, 1657–1667 (1998).
[CrossRef]

F. M. Pennebaker, D. A. Jones, C. A. Gresham, R. W. Williams, R. E. Simon, M. F. Schappert, M. B. Denton, “Spectroscopic instrumentation in the 21st century: excitement at the horizon,” J. Anal. At. Spectrom. 13, 821–827 (1998).
[CrossRef]

A. T. Zander, “Continual improvement of instrumentation for analytical spectrochemistry,” J. Anal. At. Spectrom. 13, 459–461 (1998).
[CrossRef]

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

1997 (2)

H. Becker-Ross, S. V. Florek, “Echelle spectrometers and charge-coupled devices,” Spectrochim. Acta Part B 52, 1367–1375 (1997).
[CrossRef]

J. M. Harnly, R. E. Fields, “Solid-state array detectors for analytical spectrometry,” Appl. Spectrosc. 51, 334A–351A (1997).
[CrossRef]

1996 (2)

T. W. Hieftje, “The future of plasma spectrochemical instrumentation,” J. Anal. At. Spectrom. 11, 613–622 (1996).
[CrossRef]

Q. S. Hanley, C. W. Earle, F. M. Pennebaker, S. P. Madden, M. B. Denton, “Charge-transfer devices in analytical instrumentation,” Anal. Chem. 68, 661A–667A (1996).
[CrossRef]

1994 (1)

L. Hiddemann, J. Uebbing, A. Ciocan, O. Dessenne, K. Niemax, “Simultaneous multielement analysis of solid samples by laser ablation-microwave-induced plasma optical emission spectrometry,” Anal. Chim. Acta 283, 152–159 (1994).
[CrossRef]

1993 (1)

T. W. Barnard, M. J. Crockett, J. C. Ivaldi, P. L. Lundberg, “Design and evaluation of echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
[CrossRef]

1990 (1)

Barnard, T. W.

T. W. Barnard, M. J. Crockett, J. C. Ivaldi, P. L. Lundberg, “Design and evaluation of echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
[CrossRef]

Bauer, H. E.

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

Becker-Ross, H.

S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
[CrossRef]

H. Becker-Ross, S. V. Florek, “Echelle spectrometers and charge-coupled devices,” Spectrochim. Acta Part B 52, 1367–1375 (1997).
[CrossRef]

Bulman, F. D.

S. Luan, R. G. Schleicher, M. J. Pilon, F. D. Bulman, G. N. Coleman, “An echelle polychromator for inductively coupled plasma optical emission spectroscopy with vacuum ultraviolet wavelength coverage and charge injection device detection,” Spectrochim. Acta Part B 57, 1143–1157 (2001).
[CrossRef]

Charfi, B.

B. Charfi, M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141–1153 (2002).
[CrossRef]

Chien, R-L.

A. T. Zander, R-L. Chien, C. B. Cooper, P. V. Wilson, “An image-mapped detector for simultaneous ICP-AES,” Anal. Chem. 71, 3332–3340 (1999).
[CrossRef]

Ciocan, A.

L. Hiddemann, J. Uebbing, A. Ciocan, O. Dessenne, K. Niemax, “Simultaneous multielement analysis of solid samples by laser ablation-microwave-induced plasma optical emission spectrometry,” Anal. Chim. Acta 283, 152–159 (1994).
[CrossRef]

Coleman, G. N.

S. Luan, R. G. Schleicher, M. J. Pilon, F. D. Bulman, G. N. Coleman, “An echelle polychromator for inductively coupled plasma optical emission spectroscopy with vacuum ultraviolet wavelength coverage and charge injection device detection,” Spectrochim. Acta Part B 57, 1143–1157 (2001).
[CrossRef]

Cooper, C. B.

A. T. Zander, R-L. Chien, C. B. Cooper, P. V. Wilson, “An image-mapped detector for simultaneous ICP-AES,” Anal. Chem. 71, 3332–3340 (1999).
[CrossRef]

Crockett, M. J.

T. W. Barnard, M. J. Crockett, J. C. Ivaldi, P. L. Lundberg, “Design and evaluation of echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
[CrossRef]

Denton, M. B.

F. M. Pennebaker, D. A. Jones, C. A. Gresham, R. W. Williams, R. E. Simon, M. F. Schappert, M. B. Denton, “Spectroscopic instrumentation in the 21st century: excitement at the horizon,” J. Anal. At. Spectrom. 13, 821–827 (1998).
[CrossRef]

Q. S. Hanley, C. W. Earle, F. M. Pennebaker, S. P. Madden, M. B. Denton, “Charge-transfer devices in analytical instrumentation,” Anal. Chem. 68, 661A–667A (1996).
[CrossRef]

M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran, S. B. Smith, “Evaluation of new array detector for atomic emission spectrometer for inductively coupled plasma atomic emission spectroscopy,” Appl. Spectrosc. 44, 1613–1620 (1990).
[CrossRef]

Dessenne, O.

L. Hiddemann, J. Uebbing, A. Ciocan, O. Dessenne, K. Niemax, “Simultaneous multielement analysis of solid samples by laser ablation-microwave-induced plasma optical emission spectrometry,” Anal. Chim. Acta 283, 152–159 (1994).
[CrossRef]

Detalle, V.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Earle, C. W.

Q. S. Hanley, C. W. Earle, F. M. Pennebaker, S. P. Madden, M. B. Denton, “Charge-transfer devices in analytical instrumentation,” Anal. Chem. 68, 661A–667A (1996).
[CrossRef]

Fichet, P.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Fields, R. E.

Florek, S.

S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
[CrossRef]

Florek, S. V.

H. Becker-Ross, S. V. Florek, “Echelle spectrometers and charge-coupled devices,” Spectrochim. Acta Part B 52, 1367–1375 (1997).
[CrossRef]

Gresham, C. A.

F. M. Pennebaker, D. A. Jones, C. A. Gresham, R. W. Williams, R. E. Simon, M. F. Schappert, M. B. Denton, “Spectroscopic instrumentation in the 21st century: excitement at the horizon,” J. Anal. At. Spectrom. 13, 821–827 (1998).
[CrossRef]

Haisch, C.

S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
[CrossRef]

C. Haisch, U. Panne, R. Niessner, “Combination of an intensified charge coupled device with an echelle spectrograph for analysis of colloidal material by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 53, 1657–1667 (1998).
[CrossRef]

Hanley, Q. S.

Q. S. Hanley, C. W. Earle, F. M. Pennebaker, S. P. Madden, M. B. Denton, “Charge-transfer devices in analytical instrumentation,” Anal. Chem. 68, 661A–667A (1996).
[CrossRef]

Harith, M. A.

B. Charfi, M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141–1153 (2002).
[CrossRef]

Harnly, J. M.

Héon, R.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Hiddemann, L.

L. Hiddemann, J. Uebbing, A. Ciocan, O. Dessenne, K. Niemax, “Simultaneous multielement analysis of solid samples by laser ablation-microwave-induced plasma optical emission spectrometry,” Anal. Chim. Acta 283, 152–159 (1994).
[CrossRef]

Hieftje, T. W.

T. W. Hieftje, “The future of plasma spectrochemical instrumentation,” J. Anal. At. Spectrom. 11, 613–622 (1996).
[CrossRef]

Hoskins, R.

R. G. Scott, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
[CrossRef]

Ivaldi, J. C.

T. W. Barnard, M. J. Crockett, J. C. Ivaldi, P. L. Lundberg, “Design and evaluation of echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
[CrossRef]

Jones, D. A.

F. M. Pennebaker, D. A. Jones, C. A. Gresham, R. W. Williams, R. E. Simon, M. F. Schappert, M. B. Denton, “Spectroscopic instrumentation in the 21st century: excitement at the horizon,” J. Anal. At. Spectrom. 13, 821–827 (1998).
[CrossRef]

Leis, F.

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

Lindblom, P.

P. Lindblom, “New compact Echelle spectrographs with multichannel time-resolved recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
[CrossRef]

Luan, S.

S. Luan, R. G. Schleicher, M. J. Pilon, F. D. Bulman, G. N. Coleman, “An echelle polychromator for inductively coupled plasma optical emission spectroscopy with vacuum ultraviolet wavelength coverage and charge injection device detection,” Spectrochim. Acta Part B 57, 1143–1157 (2001).
[CrossRef]

Lundberg, P. L.

T. W. Barnard, M. J. Crockett, J. C. Ivaldi, P. L. Lundberg, “Design and evaluation of echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
[CrossRef]

Madden, S. P.

Q. S. Hanley, C. W. Earle, F. M. Pennebaker, S. P. Madden, M. B. Denton, “Charge-transfer devices in analytical instrumentation,” Anal. Chem. 68, 661A–667A (1996).
[CrossRef]

Mauchien, P.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Moran, P. M.

Morgan, S. L.

R. G. Scott, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
[CrossRef]

Moulin, C.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Niemax, K.

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

L. Hiddemann, J. Uebbing, A. Ciocan, O. Dessenne, K. Niemax, “Simultaneous multielement analysis of solid samples by laser ablation-microwave-induced plasma optical emission spectrometry,” Anal. Chim. Acta 283, 152–159 (1994).
[CrossRef]

Niessner, R.

C. Haisch, U. Panne, R. Niessner, “Combination of an intensified charge coupled device with an echelle spectrograph for analysis of colloidal material by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 53, 1657–1667 (1998).
[CrossRef]

Okruss, M.

S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
[CrossRef]

Oxsher, A.

R. G. Scott, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
[CrossRef]

Panne, U.

C. Haisch, U. Panne, R. Niessner, “Combination of an intensified charge coupled device with an echelle spectrograph for analysis of colloidal material by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 53, 1657–1667 (1998).
[CrossRef]

Pennebaker, F. M.

F. M. Pennebaker, D. A. Jones, C. A. Gresham, R. W. Williams, R. E. Simon, M. F. Schappert, M. B. Denton, “Spectroscopic instrumentation in the 21st century: excitement at the horizon,” J. Anal. At. Spectrom. 13, 821–827 (1998).
[CrossRef]

Q. S. Hanley, C. W. Earle, F. M. Pennebaker, S. P. Madden, M. B. Denton, “Charge-transfer devices in analytical instrumentation,” Anal. Chem. 68, 661A–667A (1996).
[CrossRef]

Pilon, M. J.

S. Luan, R. G. Schleicher, M. J. Pilon, F. D. Bulman, G. N. Coleman, “An echelle polychromator for inductively coupled plasma optical emission spectroscopy with vacuum ultraviolet wavelength coverage and charge injection device detection,” Spectrochim. Acta Part B 57, 1143–1157 (2001).
[CrossRef]

M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran, S. B. Smith, “Evaluation of new array detector for atomic emission spectrometer for inductively coupled plasma atomic emission spectroscopy,” Appl. Spectrosc. 44, 1613–1620 (1990).
[CrossRef]

Sabsabi, M.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Schappert, M. F.

F. M. Pennebaker, D. A. Jones, C. A. Gresham, R. W. Williams, R. E. Simon, M. F. Schappert, M. B. Denton, “Spectroscopic instrumentation in the 21st century: excitement at the horizon,” J. Anal. At. Spectrom. 13, 821–827 (1998).
[CrossRef]

Schleicher, R. G.

S. Luan, R. G. Schleicher, M. J. Pilon, F. D. Bulman, G. N. Coleman, “An echelle polychromator for inductively coupled plasma optical emission spectroscopy with vacuum ultraviolet wavelength coverage and charge injection device detection,” Spectrochim. Acta Part B 57, 1143–1157 (2001).
[CrossRef]

M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran, S. B. Smith, “Evaluation of new array detector for atomic emission spectrometer for inductively coupled plasma atomic emission spectroscopy,” Appl. Spectrosc. 44, 1613–1620 (1990).
[CrossRef]

Scott, R. G.

R. G. Scott, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
[CrossRef]

Simon, R. E.

F. M. Pennebaker, D. A. Jones, C. A. Gresham, R. W. Williams, R. E. Simon, M. F. Schappert, M. B. Denton, “Spectroscopic instrumentation in the 21st century: excitement at the horizon,” J. Anal. At. Spectrom. 13, 821–827 (1998).
[CrossRef]

Smith, S. B.

St-Onge, L.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Uebbing, J.

L. Hiddemann, J. Uebbing, A. Ciocan, O. Dessenne, K. Niemax, “Simultaneous multielement analysis of solid samples by laser ablation-microwave-induced plasma optical emission spectrometry,” Anal. Chim. Acta 283, 152–159 (1994).
[CrossRef]

Wagner, J. F.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Williams, R. W.

F. M. Pennebaker, D. A. Jones, C. A. Gresham, R. W. Williams, R. E. Simon, M. F. Schappert, M. B. Denton, “Spectroscopic instrumentation in the 21st century: excitement at the horizon,” J. Anal. At. Spectrom. 13, 821–827 (1998).
[CrossRef]

Wilson, P. V.

A. T. Zander, R-L. Chien, C. B. Cooper, P. V. Wilson, “An image-mapped detector for simultaneous ICP-AES,” Anal. Chem. 71, 3332–3340 (1999).
[CrossRef]

Zander, A. T.

A. T. Zander, R-L. Chien, C. B. Cooper, P. V. Wilson, “An image-mapped detector for simultaneous ICP-AES,” Anal. Chem. 71, 3332–3340 (1999).
[CrossRef]

A. T. Zander, “Continual improvement of instrumentation for analytical spectrochemistry,” J. Anal. At. Spectrom. 13, 459–461 (1998).
[CrossRef]

Anal. Chem. (3)

T. W. Barnard, M. J. Crockett, J. C. Ivaldi, P. L. Lundberg, “Design and evaluation of echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
[CrossRef]

A. T. Zander, R-L. Chien, C. B. Cooper, P. V. Wilson, “An image-mapped detector for simultaneous ICP-AES,” Anal. Chem. 71, 3332–3340 (1999).
[CrossRef]

Q. S. Hanley, C. W. Earle, F. M. Pennebaker, S. P. Madden, M. B. Denton, “Charge-transfer devices in analytical instrumentation,” Anal. Chem. 68, 661A–667A (1996).
[CrossRef]

Anal. Chim. Acta (3)

P. Lindblom, “New compact Echelle spectrographs with multichannel time-resolved recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
[CrossRef]

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

L. Hiddemann, J. Uebbing, A. Ciocan, O. Dessenne, K. Niemax, “Simultaneous multielement analysis of solid samples by laser ablation-microwave-induced plasma optical emission spectrometry,” Anal. Chim. Acta 283, 152–159 (1994).
[CrossRef]

Appl. Spectrosc. (2)

J. Anal. At. Spectrom. (4)

R. G. Scott, S. L. Morgan, R. Hoskins, A. Oxsher, “Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer,” J. Anal. At. Spectrom. 15, 1133–1138 (2000).
[CrossRef]

T. W. Hieftje, “The future of plasma spectrochemical instrumentation,” J. Anal. At. Spectrom. 11, 613–622 (1996).
[CrossRef]

A. T. Zander, “Continual improvement of instrumentation for analytical spectrochemistry,” J. Anal. At. Spectrom. 13, 459–461 (1998).
[CrossRef]

F. M. Pennebaker, D. A. Jones, C. A. Gresham, R. W. Williams, R. E. Simon, M. F. Schappert, M. B. Denton, “Spectroscopic instrumentation in the 21st century: excitement at the horizon,” J. Anal. At. Spectrom. 13, 821–827 (1998).
[CrossRef]

Spectrochim. Acta Part B (7)

S. Luan, R. G. Schleicher, M. J. Pilon, F. D. Bulman, G. N. Coleman, “An echelle polychromator for inductively coupled plasma optical emission spectroscopy with vacuum ultraviolet wavelength coverage and charge injection device detection,” Spectrochim. Acta Part B 57, 1143–1157 (2001).
[CrossRef]

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

H. Becker-Ross, S. V. Florek, “Echelle spectrometers and charge-coupled devices,” Spectrochim. Acta Part B 52, 1367–1375 (1997).
[CrossRef]

C. Haisch, U. Panne, R. Niessner, “Combination of an intensified charge coupled device with an echelle spectrograph for analysis of colloidal material by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 53, 1657–1667 (1998).
[CrossRef]

S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

B. Charfi, M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141–1153 (2002).
[CrossRef]

Other (3)

Multichannel Instruments AB, Sweden, http://www.multichannel.se/ .

Catalina Scientific Corporation, USA, http://www.catalinasci.com/ .

LLA Instruments GmbH, Germany, http://www.lla.de/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup at NRC with System A (ESA 3000 from LLA). L, lenses.

Fig. 2
Fig. 2

Experimental setup at NILES with System B (Mechelle 7500 from Multichannel). PC, personal computer.

Fig. 3
Fig. 3

Single-shot spectrum of aluminum sample obtained by System A with zoomed segment showing the beryllium line in the UV region.

Fig. 4
Fig. 4

The spectrum is an accumulation of five shots fired on an aluminum sample obtained by System B, with the zoomed segment showing the beryllium line in the UV region.

Fig. 5
Fig. 5

Calibration curve of Mn obtained by System A.

Fig. 6
Fig. 6

Calibration curve of Mn obtained by System B.

Tables (1)

Tables Icon

Table 1 Limit of Detection for Various Elements in the Same Aluminum Alloys Obtained by Systems A and B

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S=SphQEpctGΔVEpQECCD,

Metrics