Abstract

Use of dual-pulse laser-induced breakdown spectroscopy with an orthogonal spark orientation is presented as a technique for trace metal analysis in bulk aqueous solutions. Two separate Q-switched Nd:YAG lasers operating at their fundamental wavelengths are used to form a subsurface, laser-induced plasma in a bulk aqueous solution that is spectroscopically analyzed for the in situ detection of Ca, Cr, and Zn. Optimizing the key experimental parameters of proper spark alignment, gate delay (t d), gate width (t b), and interpulse timing (ΔT) allowed experimentally determined detection limits of the order of micrograms per milliliter and submicrograms per milliliter. We present supporting evidence of a sampling mechanism that involves the formation of a cavitation bubble with the first pulse (E 1) followed by analysis of that bubble with a second pulse (E 2). The plasma created by E 2 contains the analytically relevant information from the aqueous sample and often represents >250-fold enhancement over a single laser pulse with energy equal to E 1 alone.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Brech, L. Cross, “Optical microemission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).
  2. V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23(3), 143–162 (1992).
    [CrossRef]
  3. F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and dual pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
    [CrossRef]
  4. D. N. Stratis, K. E. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
    [CrossRef]
  5. S. M. Angel, D. N. Stratis, K. E. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
    [CrossRef] [PubMed]
  6. D. N. Stratis, K. E. Eland, S. M. Angel, “Dual-pulse LIBS: why are two lasers better than one?,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. T. Spellicy, eds., Proc. SPIE3853, 385–392 (1999).
    [CrossRef]
  7. D. N. Stratis, K. E. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
    [CrossRef]
  8. L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
    [CrossRef]
  9. D. C. S. Beddows, O. Samek, M. Liska, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461–1471 (2002).
    [CrossRef]
  10. L. J. Radziemski, “Review of analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).
    [CrossRef]
  11. J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
    [CrossRef]
  12. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102–1105 (1997).
    [CrossRef]
  13. Y. I. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000), Chap. 3.
  14. X. D. Hou, B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
    [CrossRef]
  15. D. Anglos, S. Couris, C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025–1030 (1997).
    [CrossRef]
  16. D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).
  17. D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
    [CrossRef]
  18. K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197-198, 156–163 (2002).
    [CrossRef]
  19. A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
    [CrossRef]
  20. M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
    [CrossRef]
  21. P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
    [CrossRef]
  22. R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).
  23. V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
    [CrossRef]
  24. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
    [CrossRef]
  25. J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
    [CrossRef]
  26. M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
    [CrossRef]
  27. Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
    [CrossRef]
  28. C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
    [CrossRef]
  29. L. M. Cabalín, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
    [CrossRef]
  30. P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001).
    [CrossRef]
  31. J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001).
    [CrossRef]
  32. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
    [CrossRef]
  33. J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
    [CrossRef]
  34. L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
    [CrossRef]
  35. A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001).
    [CrossRef]
  36. V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
    [CrossRef]
  37. Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
    [CrossRef]
  38. L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
    [CrossRef]
  39. M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
    [CrossRef]
  40. V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
    [CrossRef]
  41. L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
    [CrossRef]
  42. M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
    [CrossRef]
  43. O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras, A. González Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
    [CrossRef]
  44. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).
  45. O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).
  46. R. Nyga, W. Neu, “Double-pulse technique for optical-emission spectroscopy of ablation plasmas of samples in liquids,” Opt. Lett. 18, 747–749 (1993).
    [CrossRef] [PubMed]
  47. A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
    [CrossRef]
  48. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
    [CrossRef]
  49. G. A. Theriault, S. H. Lieberman, “Field deployment of a LIBS probe for rapid delineation of metals in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 83–89 (1996).
    [CrossRef]
  50. G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998).
    [CrossRef]
  51. B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
    [CrossRef]
  52. B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997).
    [CrossRef]
  53. B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
    [CrossRef]
  54. C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
    [CrossRef]
  55. C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).
  56. R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999).
    [CrossRef]
  57. S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
    [CrossRef]
  58. G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001).
    [CrossRef]
  59. A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
    [CrossRef]
  60. A. L. Moskvin, L. N. Moskvin, I. A. Ardashnikova, “Systems for continuous water quality control in a flow,” J. Anal. Chem. 55, 1173–1178 (2000).
    [CrossRef]
  61. “EPA ground water and drinking water current drinking water standards,” July2002, http://www.epa.gov/cgi-bin/epaprintonly.cgi .
  62. Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995).
    [CrossRef]
  63. S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
    [CrossRef] [PubMed]
  64. R. E. Sturgeon, “Future of atomic spectrometry for environmental analysis,” J. Anal. At. Spectrom. 13(5), 351–361 (1998).
    [CrossRef]
  65. C. Jimenez, I. Marques, J. Bartroli, “Continuous-flow system for on-line water monitoring using back-side contact ISFET-based sensors,” Anal. Chem. 68, 3801–3807 (1996).
    [CrossRef] [PubMed]
  66. E. Carasek, “A low cost flame atomic absorption spectrometry method for determination of trace metals in aqueous samples,” Talanta 51, 173–178 (2000).
    [CrossRef]
  67. H. Emons, B. Hüllenkremer, M. J. Schöning, “Detection of metal ions in aqueous solution by voltohmmetry,” Fresenius J. Anal. Chem. 369(1), 42–46 (2001).
    [CrossRef]
  68. S. B. Saban, R. B. Darling, “Multi-element heavy metal ion sensors for aqueous solutions,” Sens. Actuators B 61, 128–137 (1999).
    [CrossRef]
  69. H. A. Archontaki, S. R. Crouch, “Evaluation of an isolated droplet sample introduction system for laser-induced breakdown spectroscopy,” Appl. Spectrosc. 42, 741–746 (1998).
    [CrossRef]
  70. J. S. Huang, C. B. Ke, L. S. Huang, K. C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta Part B 57, 35–48 (2002).
    [CrossRef]
  71. W. F. Ho, C. W. Ng, N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effect of laser wavelength,” Appl. Spectrosc. 51(1), 87–91 (1997).
    [CrossRef]
  72. J. R. Wachter, D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042–1048 (1987).
    [CrossRef]
  73. D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
    [CrossRef]
  74. R. Knopp, F. J. Scherbaum, J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16–20 (1996).
    [CrossRef]
  75. T. Kitamori, T. Matsui, M. Sakagami, T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205–2208 (1989).
    [CrossRef]
  76. K. M. Lo, N. H. Cheung, “ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions,” Appl. Spectrosc. 56, 682–688 (2002).
    [CrossRef]
  77. O. Samek, M. Liska, J. Kaiser, V. T. Krzyzanek, H. H. Telle, G. Morris, D. C. S. Beddows, “Analysis of liquid samples using laser induced breakdown spectroscopy,” in Optical Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, H. Hu, G. Wang, eds., Proc. SPIE3504, 299–308 (1998).
    [CrossRef]
  78. V. N. Rai, F. Y. Yuch, J. P. Singh, “Study of laser-induced breakdown emission from liquid under double pulse excitation,” Appl. Opt. 42, 2094–2101 (2003).
    [CrossRef] [PubMed]
  79. M. Hosoda, A. Aoshima, T. Itoh, Y. Tsuchiya, “Enhancement of the laser breakdown of simple gaseous and liquid materials under intense picosecond double-pulse excitation,” Jpn. J. Appl. Phys. 38, 3567–3568 (1999).
    [CrossRef]
  80. R. L. Vander Wal, T. M. Ticich, J. R. West, P. A. Householder, “Trace metal detection by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 1226–1236 (1999).
    [CrossRef]
  81. A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25–39 (1997).
    [CrossRef]
  82. B. Charfi, M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta. Part B 57, 1141–1153 (2002).
    [CrossRef]
  83. P. Fischet, A. Toussaint, J.-F. Wagner, “Laser-induced breakdown spectroscopy: a tool for analysis of different types of liquids,” Appl. Phys. A 69, (Suppl.) S591–S592 (1999).
  84. P. K. Kennedy, D. X. Hammer, B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
    [CrossRef]
  85. T. Bundschuh, J.-I. Yun, R. Knopp, “Determination of size, concentration and elemental composition of colloids with laser-induced breakdown detection/spectroscopy (LIBD/S),” Fresenius J. Anal. Chem. 371, 1063–1069 (2001).
    [CrossRef]
  86. Y. Tomita, M. Tsubota, K. Nagane, N. An-naka, “Behavior of laser-induced cavitation bubbles in liquid nitrogen,” J. Appl. Phys. 88, 5993–6001 (2000).
    [CrossRef]

2003 (1)

2002 (6)

J. S. Huang, C. B. Ke, L. S. Huang, K. C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta Part B 57, 35–48 (2002).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and dual pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

D. C. S. Beddows, O. Samek, M. Liska, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461–1471 (2002).
[CrossRef]

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197-198, 156–163 (2002).
[CrossRef]

K. M. Lo, N. H. Cheung, “ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions,” Appl. Spectrosc. 56, 682–688 (2002).
[CrossRef]

B. Charfi, M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta. Part B 57, 1141–1153 (2002).
[CrossRef]

2001 (23)

T. Bundschuh, J.-I. Yun, R. Knopp, “Determination of size, concentration and elemental composition of colloids with laser-induced breakdown detection/spectroscopy (LIBD/S),” Fresenius J. Anal. Chem. 371, 1063–1069 (2001).
[CrossRef]

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. E. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

L. M. Cabalín, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001).
[CrossRef]

J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
[CrossRef]

A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
[CrossRef]

M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
[CrossRef]

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras, A. González Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

H. Emons, B. Hüllenkremer, M. J. Schöning, “Detection of metal ions in aqueous solution by voltohmmetry,” Fresenius J. Anal. Chem. 369(1), 42–46 (2001).
[CrossRef]

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001).
[CrossRef]

2000 (15)

A. L. Moskvin, L. N. Moskvin, I. A. Ardashnikova, “Systems for continuous water quality control in a flow,” J. Anal. Chem. 55, 1173–1178 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

D. N. Stratis, K. E. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

D. N. Stratis, K. E. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
[CrossRef]

M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
[CrossRef]

X. D. Hou, B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
[CrossRef]

Y. Tomita, M. Tsubota, K. Nagane, N. An-naka, “Behavior of laser-induced cavitation bubbles in liquid nitrogen,” J. Appl. Phys. 88, 5993–6001 (2000).
[CrossRef]

E. Carasek, “A low cost flame atomic absorption spectrometry method for determination of trace metals in aqueous samples,” Talanta 51, 173–178 (2000).
[CrossRef]

1999 (11)

P. Fischet, A. Toussaint, J.-F. Wagner, “Laser-induced breakdown spectroscopy: a tool for analysis of different types of liquids,” Appl. Phys. A 69, (Suppl.) S591–S592 (1999).

J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).

C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

S. B. Saban, R. B. Darling, “Multi-element heavy metal ion sensors for aqueous solutions,” Sens. Actuators B 61, 128–137 (1999).
[CrossRef]

M. Hosoda, A. Aoshima, T. Itoh, Y. Tsuchiya, “Enhancement of the laser breakdown of simple gaseous and liquid materials under intense picosecond double-pulse excitation,” Jpn. J. Appl. Phys. 38, 3567–3568 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, J. R. West, P. A. Householder, “Trace metal detection by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 1226–1236 (1999).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999).
[CrossRef]

1998 (5)

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998).
[CrossRef]

H. A. Archontaki, S. R. Crouch, “Evaluation of an isolated droplet sample introduction system for laser-induced breakdown spectroscopy,” Appl. Spectrosc. 42, 741–746 (1998).
[CrossRef]

R. E. Sturgeon, “Future of atomic spectrometry for environmental analysis,” J. Anal. At. Spectrom. 13(5), 351–361 (1998).
[CrossRef]

L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

1997 (5)

1996 (5)

R. Knopp, F. J. Scherbaum, J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16–20 (1996).
[CrossRef]

C. Jimenez, I. Marques, J. Bartroli, “Continuous-flow system for on-line water monitoring using back-side contact ISFET-based sensors,” Anal. Chem. 68, 3801–3807 (1996).
[CrossRef] [PubMed]

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).

1995 (2)

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995).
[CrossRef]

1994 (1)

L. J. Radziemski, “Review of analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).
[CrossRef]

1993 (1)

1992 (1)

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23(3), 143–162 (1992).
[CrossRef]

1989 (1)

T. Kitamori, T. Matsui, M. Sakagami, T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205–2208 (1989).
[CrossRef]

1987 (1)

1984 (1)

1962 (1)

F. Brech, L. Cross, “Optical microemission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).

Aguilera, J. A.

Amador-Hernández, J.

J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001).
[CrossRef]

Angel, S. M.

S. M. Angel, D. N. Stratis, K. E. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

D. N. Stratis, K. E. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

D. N. Stratis, K. E. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997).
[CrossRef]

D. N. Stratis, K. E. Eland, S. M. Angel, “Dual-pulse LIBS: why are two lasers better than one?,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. T. Spellicy, eds., Proc. SPIE3853, 385–392 (1999).
[CrossRef]

Anglos, D.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197-198, 156–163 (2002).
[CrossRef]

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).

D. Anglos, S. Couris, C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025–1030 (1997).
[CrossRef]

An-naka, N.

Y. Tomita, M. Tsubota, K. Nagane, N. An-naka, “Behavior of laser-induced cavitation bubbles in liquid nitrogen,” J. Appl. Phys. 88, 5993–6001 (2000).
[CrossRef]

Aoshima, A.

M. Hosoda, A. Aoshima, T. Itoh, Y. Tsuchiya, “Enhancement of the laser breakdown of simple gaseous and liquid materials under intense picosecond double-pulse excitation,” Jpn. J. Appl. Phys. 38, 3567–3568 (1999).
[CrossRef]

Aragón, C.

Arca, G.

Archontaki, H. A.

Ardashnikova, I. A.

A. L. Moskvin, L. N. Moskvin, I. A. Ardashnikova, “Systems for continuous water quality control in a flow,” J. Anal. Chem. 55, 1173–1178 (2000).
[CrossRef]

Balas, C.

D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).

Barbini, R.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

Barrette, L.

L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
[CrossRef]

Bartroli, J.

C. Jimenez, I. Marques, J. Bartroli, “Continuous-flow system for on-line water monitoring using back-side contact ISFET-based sensors,” Anal. Chem. 68, 3801–3807 (1996).
[CrossRef] [PubMed]

Bäuerle, D.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Beddows, D. C. S.

D. C. S. Beddows, O. Samek, M. Liska, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461–1471 (2002).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras, A. González Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

O. Samek, M. Liska, J. Kaiser, V. T. Krzyzanek, H. H. Telle, G. Morris, D. C. S. Beddows, “Analysis of liquid samples using laser induced breakdown spectroscopy,” in Optical Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, H. Hu, G. Wang, eds., Proc. SPIE3504, 299–308 (1998).
[CrossRef]

Berg, M. A.

S. M. Angel, D. N. Stratis, K. E. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

Betancourt, P. P.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197-198, 156–163 (2002).
[CrossRef]

Bette, H.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Bicchieri, M.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

Bodensteiner, S.

G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998).
[CrossRef]

Bonarou, A.

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

Botheroyd, I. M.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Brech, F.

F. Brech, L. Cross, “Optical microemission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Bundschuh, T.

T. Bundschuh, J.-I. Yun, R. Knopp, “Determination of size, concentration and elemental composition of colloids with laser-induced breakdown detection/spectroscopy (LIBD/S),” Fresenius J. Anal. Chem. 371, 1063–1069 (2001).
[CrossRef]

Burgio, L.

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

Cabalín, L. M.

L. M. Cabalín, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

Cáceras, J. O.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras, A. González Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

Cáceres, J. O.

J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
[CrossRef]

Capitelli, F.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

Capitelli, M.

G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001).
[CrossRef]

Carasek, E.

E. Carasek, “A low cost flame atomic absorption spectrometry method for determination of trace metals in aqueous samples,” Talanta 51, 173–178 (2000).
[CrossRef]

Casavola, A.

G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001).
[CrossRef]

Castillejo, M.

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

Charfi, B.

B. Charfi, M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta. Part B 57, 1141–1153 (2002).
[CrossRef]

Cheung, N. H.

Cielo, P.

L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Ciucci, A.

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102–1105 (1997).
[CrossRef]

Clark, R. J. H.

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

Colao, F.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and dual pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

Colonna, G.

G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001).
[CrossRef]

Corbett, R. E.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Corsi, M.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

Couris, S.

Cremers, D. A.

Cristoforetti, G.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

Cross, L.

F. Brech, L. Cross, “Optical microemission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).

Crouch, S. R.

Cullum, B. M.

B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997).
[CrossRef]

Darling, R. B.

S. B. Saban, R. B. Darling, “Multi-element heavy metal ion sensors for aqueous solutions,” Sens. Actuators B 61, 128–137 (1999).
[CrossRef]

Davies, C. M.

C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

De Giacomo, A.

A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001).
[CrossRef]

De Pascale, O.

A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001).
[CrossRef]

Detalle, V.

V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Doulgeridis, M.

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

Eland, K. E.

S. M. Angel, D. N. Stratis, K. E. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

D. N. Stratis, K. E. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

D. N. Stratis, K. E. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

D. N. Stratis, K. E. Eland, S. M. Angel, “Dual-pulse LIBS: why are two lasers better than one?,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. T. Spellicy, eds., Proc. SPIE3853, 385–392 (1999).
[CrossRef]

Emons, H.

H. Emons, B. Hüllenkremer, M. J. Schöning, “Detection of metal ions in aqueous solution by voltohmmetry,” Fresenius J. Anal. Chem. 369(1), 42–46 (2001).
[CrossRef]

Evans, C. P.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Fantoni, R.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and dual pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

Fernández-Romero, J. M.

J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001).
[CrossRef]

Ferrence, S. C.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197-198, 156–163 (2002).
[CrossRef]

Ferris, M. J.

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
[CrossRef]

A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25–39 (1997).
[CrossRef]

Fichet, P.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Fischet, P.

P. Fischet, A. Toussaint, J.-F. Wagner, “Laser-induced breakdown spectroscopy: a tool for analysis of different types of liquids,” Appl. Phys. A 69, (Suppl.) S591–S592 (1999).

Fotakis, C.

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).

D. Anglos, S. Couris, C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025–1030 (1997).
[CrossRef]

French, P. D.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Gold, D. M.

S. M. Angel, D. N. Stratis, K. E. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

González Ureña, A.

J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras, A. González Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

Goode, S. R.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Gruber, J.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Hammer, D. X.

P. K. Kennedy, D. X. Hammer, B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[CrossRef]

Harith, M. A.

B. Charfi, M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta. Part B 57, 1141–1153 (2002).
[CrossRef]

Harmon, R. S.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Heitz, J.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Héon, R.

V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Hiraga, H.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Ho, W. F.

Hosoda, M.

M. Hosoda, A. Aoshima, T. Itoh, Y. Tsuchiya, “Enhancement of the laser breakdown of simple gaseous and liquid materials under intense picosecond double-pulse excitation,” Jpn. J. Appl. Phys. 38, 3567–3568 (1999).
[CrossRef]

Hou, X. D.

X. D. Hou, B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
[CrossRef]

Householder, P. A.

Huang, J. S.

J. S. Huang, C. B. Ke, L. S. Huang, K. C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta Part B 57, 35–48 (2002).
[CrossRef]

Huang, L. S.

J. S. Huang, C. B. Ke, L. S. Huang, K. C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta Part B 57, 35–48 (2002).
[CrossRef]

Hüllenkremer, B.

H. Emons, B. Hüllenkremer, M. J. Schöning, “Detection of metal ions in aqueous solution by voltohmmetry,” Fresenius J. Anal. Chem. 369(1), 42–46 (2001).
[CrossRef]

Ito, Y.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995).
[CrossRef]

Itoh, T.

M. Hosoda, A. Aoshima, T. Itoh, Y. Tsuchiya, “Enhancement of the laser breakdown of simple gaseous and liquid materials under intense picosecond double-pulse excitation,” Jpn. J. Appl. Phys. 38, 3567–3568 (1999).
[CrossRef]

Jimenez, C.

C. Jimenez, I. Marques, J. Bartroli, “Continuous-flow system for on-line water monitoring using back-side contact ISFET-based sensors,” Anal. Chem. 68, 3801–3807 (1996).
[CrossRef] [PubMed]

Jones, B. T.

X. D. Hou, B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
[CrossRef]

Joseph, M. R.

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23(3), 143–162 (1992).
[CrossRef]

Kaiser, J.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras, A. González Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

O. Samek, M. Liska, J. Kaiser, V. T. Krzyzanek, H. H. Telle, G. Morris, D. C. S. Beddows, “Analysis of liquid samples using laser induced breakdown spectroscopy,” in Optical Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, H. Hu, G. Wang, eds., Proc. SPIE3504, 299–308 (1998).
[CrossRef]

Kaneko, K.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Ke, C. B.

J. S. Huang, C. B. Ke, L. S. Huang, K. C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta Part B 57, 35–48 (2002).
[CrossRef]

Kennedy, P. K.

P. K. Kennedy, D. X. Hammer, B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[CrossRef]

Kim, J. I.

R. Knopp, F. J. Scherbaum, J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16–20 (1996).
[CrossRef]

Kim, T.

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

Kitamori, T.

T. Kitamori, T. Matsui, M. Sakagami, T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205–2208 (1989).
[CrossRef]

Knight, A. K.

Knopp, R.

T. Bundschuh, J.-I. Yun, R. Knopp, “Determination of size, concentration and elemental composition of colloids with laser-induced breakdown detection/spectroscopy (LIBD/S),” Fresenius J. Anal. Chem. 371, 1063–1069 (2001).
[CrossRef]

R. Knopp, F. J. Scherbaum, J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16–20 (1996).
[CrossRef]

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Krzyzanek, V. T.

O. Samek, M. Liska, J. Kaiser, V. T. Krzyzanek, H. H. Telle, G. Morris, D. C. S. Beddows, “Analysis of liquid samples using laser induced breakdown spectroscopy,” in Optical Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, H. Hu, G. Wang, eds., Proc. SPIE3504, 299–308 (1998).
[CrossRef]

Kukhlevesky, S. V.

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Lai, T.

S. M. Angel, D. N. Stratis, K. E. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

Laserna, J. J.

L. M. Cabalín, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001).
[CrossRef]

S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

Lawson, S.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Lazic, V.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and dual pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

Lee, G.

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

Lee, K.

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

Lee, Y. I.

J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

Y. I. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000), Chap. 3.

Lieberman, S. H.

G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998).
[CrossRef]

G. A. Theriault, S. H. Lieberman, “Field deployment of a LIBS probe for rapid delineation of metals in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 83–89 (1996).
[CrossRef]

Lin, K. C.

J. S. Huang, C. B. Ke, L. S. Huang, K. C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta Part B 57, 35–48 (2002).
[CrossRef]

Liska, M.

D. C. S. Beddows, O. Samek, M. Liska, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461–1471 (2002).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras, A. González Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

O. Samek, M. Liska, J. Kaiser, V. T. Krzyzanek, H. H. Telle, G. Morris, D. C. S. Beddows, “Analysis of liquid samples using laser induced breakdown spectroscopy,” in Optical Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, H. Hu, G. Wang, eds., Proc. SPIE3504, 299–308 (1998).
[CrossRef]

Lo, K. M.

Loree, T. R.

Lucena, P.

P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001).
[CrossRef]

Luque de Castro, M. D.

J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001).
[CrossRef]

Majidi, V.

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23(3), 143–162 (1992).
[CrossRef]

Marquardt, B. J.

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997).
[CrossRef]

Marques, I.

C. Jimenez, I. Marques, J. Bartroli, “Continuous-flow system for on-line water monitoring using back-side contact ISFET-based sensors,” Anal. Chem. 68, 3801–3807 (1996).
[CrossRef] [PubMed]

Martin, M.

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

Mateo, M.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197-198, 156–163 (2002).
[CrossRef]

Matsui, T.

T. Kitamori, T. Matsui, M. Sakagami, T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205–2208 (1989).
[CrossRef]

Mauchien, P.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

McNesby, K. L.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Melessanaki, K.

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197-198, 156–163 (2002).
[CrossRef]

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

Miziolek, A. W.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Mönch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Montgomery, D. J.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Morris, G.

O. Samek, M. Liska, J. Kaiser, V. T. Krzyzanek, H. H. Telle, G. Morris, D. C. S. Beddows, “Analysis of liquid samples using laser induced breakdown spectroscopy,” in Optical Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, H. Hu, G. Wang, eds., Proc. SPIE3504, 299–308 (1998).
[CrossRef]

Morris, G. W.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

Moskvin, A. L.

A. L. Moskvin, L. N. Moskvin, I. A. Ardashnikova, “Systems for continuous water quality control in a flow,” J. Anal. Chem. 55, 1173–1178 (2000).
[CrossRef]

Moskvin, L. N.

A. L. Moskvin, L. N. Moskvin, I. A. Ardashnikova, “Systems for continuous water quality control in a flow,” J. Anal. Chem. 55, 1173–1178 (2000).
[CrossRef]

Moulin, C.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Nagane, K.

Y. Tomita, M. Tsubota, K. Nagane, N. An-naka, “Behavior of laser-induced cavitation bubbles in liquid nitrogen,” J. Appl. Phys. 88, 5993–6001 (2000).
[CrossRef]

Nakamura, S.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995).
[CrossRef]

Nardone, M.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

Neu, W.

Neuhauser, R. E.

R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999).
[CrossRef]

Ng, C. W.

Niessner, R.

R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999).
[CrossRef]

Noll, R.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Nyga, R.

Palanco, S.

S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

Palleschi, S.

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

Palleschi, V.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102–1105 (1997).
[CrossRef]

Palucci, A.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

Panne, U.

R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999).
[CrossRef]

Peñalba, F.

Pershin, S.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and dual pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

Peter, L.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Pichahchy, A. E.

A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25–39 (1997).
[CrossRef]

Radziemski, L. J.

L. J. Radziemski, “Review of analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).
[CrossRef]

D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

Rai, V. N.

Ramaseder, N.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Rastelli, S.

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102–1105 (1997).
[CrossRef]

Rockwell, B. A.

P. K. Kennedy, D. X. Hammer, B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[CrossRef]

Russo, P. A.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

Saban, S. B.

S. B. Saban, R. B. Darling, “Multi-element heavy metal ion sensors for aqueous solutions,” Sens. Actuators B 61, 128–137 (1999).
[CrossRef]

Sabsabi, M.

V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Sakagami, M.

T. Kitamori, T. Matsui, M. Sakagami, T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205–2208 (1989).
[CrossRef]

Salvetti, A.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

Samek, O.

D. C. S. Beddows, O. Samek, M. Liska, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461–1471 (2002).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras, A. González Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

O. Samek, M. Liska, J. Kaiser, V. T. Krzyzanek, H. H. Telle, G. Morris, D. C. S. Beddows, “Analysis of liquid samples using laser induced breakdown spectroscopy,” in Optical Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, H. Hu, G. Wang, eds., Proc. SPIE3504, 299–308 (1998).
[CrossRef]

Sawada, T.

T. Kitamori, T. Matsui, M. Sakagami, T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205–2208 (1989).
[CrossRef]

Scherbarth, N. L.

Scherbaum, F. J.

R. Knopp, F. J. Scherbaum, J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16–20 (1996).
[CrossRef]

Schöning, M. J.

H. Emons, B. Hüllenkremer, M. J. Schöning, “Detection of metal ions in aqueous solution by voltohmmetry,” Fresenius J. Anal. Chem. 369(1), 42–46 (2001).
[CrossRef]

Shakhatov, V. A.

A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001).
[CrossRef]

Shaw, T. J.

B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997).
[CrossRef]

Silva, D.

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

Singh, D. P.

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

Singh, J. P.

Smith, B.

M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
[CrossRef]

Smith, B. W.

M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
[CrossRef]

Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
[CrossRef]

Sneddon, J.

J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

Y. I. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000), Chap. 3.

Sodo, A.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

Sone, K.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Song, K.

Y. I. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000), Chap. 3.

St.-Onge, L.

V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Strasser, H.

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Stratis, D. N.

Stratoudaki, T.

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

Sturgeon, R. E.

R. E. Sturgeon, “Future of atomic spectrometry for environmental analysis,” J. Anal. At. Spectrom. 13(5), 351–361 (1998).
[CrossRef]

Sturm, V.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Sun, Q.

Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
[CrossRef]

M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
[CrossRef]

Sun, S.

M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
[CrossRef]

Telle, H. H.

D. C. S. Beddows, O. Samek, M. Liska, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461–1471 (2002).
[CrossRef]

J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras, A. González Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, V. T. Krzyzanek, H. H. Telle, G. Morris, D. C. S. Beddows, “Analysis of liquid samples using laser induced breakdown spectroscopy,” in Optical Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, H. Hu, G. Wang, eds., Proc. SPIE3504, 299–308 (1998).
[CrossRef]

Theriault, G. A.

G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998).
[CrossRef]

G. A. Theriault, S. H. Lieberman, “Field deployment of a LIBS probe for rapid delineation of metals in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 83–89 (1996).
[CrossRef]

Ticich, T. M.

Tognoni, E.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102–1105 (1997).
[CrossRef]

Tomita, Y.

Y. Tomita, M. Tsubota, K. Nagane, N. An-naka, “Behavior of laser-induced cavitation bubbles in liquid nitrogen,” J. Appl. Phys. 88, 5993–6001 (2000).
[CrossRef]

Tornari, V.

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

Tornero López, J.

J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
[CrossRef]

Toussaint, A.

P. Fischet, A. Toussaint, J.-F. Wagner, “Laser-induced breakdown spectroscopy: a tool for analysis of different types of liquids,” Appl. Phys. A 69, (Suppl.) S591–S592 (1999).

Tran, M.

M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
[CrossRef]

Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
[CrossRef]

M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
[CrossRef]

Tsubota, M.

Y. Tomita, M. Tsubota, K. Nagane, N. An-naka, “Behavior of laser-induced cavitation bubbles in liquid nitrogen,” J. Appl. Phys. 88, 5993–6001 (2000).
[CrossRef]

Tsuchiya, Y.

M. Hosoda, A. Aoshima, T. Itoh, Y. Tsuchiya, “Enhancement of the laser breakdown of simple gaseous and liquid materials under intense picosecond double-pulse excitation,” Jpn. J. Appl. Phys. 38, 3567–3568 (1999).
[CrossRef]

Turmel, S.

L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
[CrossRef]

Ueki, O.

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995).
[CrossRef]

Vainos, N. A.

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

Vander Wal, R. L.

Wachter, J. R.

Wagner, J. F.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Wagner, J.-F.

P. Fischet, A. Toussaint, J.-F. Wagner, “Laser-induced breakdown spectroscopy: a tool for analysis of different types of liquids,” Appl. Phys. A 69, (Suppl.) S591–S592 (1999).

Wainner, R. T.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

West, J. R.

Whitehouse, A. I.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Williams, A. W.

C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).

Winefordner, J. D.

M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
[CrossRef]

Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
[CrossRef]

M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
[CrossRef]

Wright, J.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Yang, M.

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

Yoon, Y.

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

Young, J.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Yuch, F. Y.

Yun, J.-I.

T. Bundschuh, J.-I. Yun, R. Knopp, “Determination of size, concentration and elemental composition of colloids with laser-induced breakdown detection/spectroscopy (LIBD/S),” Fresenius J. Anal. Chem. 371, 1063–1069 (2001).
[CrossRef]

Zafiropulos, V.

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

Am. Lab. (Shelton, Conn.) (1)

D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).

Anal. Chem. (4)

L. M. Cabalín, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

C. Jimenez, I. Marques, J. Bartroli, “Continuous-flow system for on-line water monitoring using back-side contact ISFET-based sensors,” Anal. Chem. 68, 3801–3807 (1996).
[CrossRef] [PubMed]

Anal. Chim. Acta (6)

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995).
[CrossRef]

R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999).
[CrossRef]

Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000).
[CrossRef]

J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001).
[CrossRef]

M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000).
[CrossRef]

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Anal. Lett. (1)

J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (3)

P. Fischet, A. Toussaint, J.-F. Wagner, “Laser-induced breakdown spectroscopy: a tool for analysis of different types of liquids,” Appl. Phys. A 69, (Suppl.) S591–S592 (1999).

R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).

Appl. Spectrosc. (16)

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

W. F. Ho, C. W. Ng, N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effect of laser wavelength,” Appl. Spectrosc. 51(1), 87–91 (1997).
[CrossRef]

J. R. Wachter, D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042–1048 (1987).
[CrossRef]

D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

H. A. Archontaki, S. R. Crouch, “Evaluation of an isolated droplet sample introduction system for laser-induced breakdown spectroscopy,” Appl. Spectrosc. 42, 741–746 (1998).
[CrossRef]

K. M. Lo, N. H. Cheung, “ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions,” Appl. Spectrosc. 56, 682–688 (2002).
[CrossRef]

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102–1105 (1997).
[CrossRef]

D. N. Stratis, K. E. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

F. Brech, L. Cross, “Optical microemission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).

D. N. Stratis, K. E. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

D. Anglos, S. Couris, C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025–1030 (1997).
[CrossRef]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
[CrossRef]

L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, J. R. West, P. A. Householder, “Trace metal detection by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 1226–1236 (1999).
[CrossRef]

Appl. Surf. Sci. (1)

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197-198, 156–163 (2002).
[CrossRef]

Chem. Lett. (1)

T. Kitamori, T. Matsui, M. Sakagami, T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205–2208 (1989).
[CrossRef]

Crit. Rev. Anal. Chem. (1)

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23(3), 143–162 (1992).
[CrossRef]

Field Anal. Chem. Technol. (1)

G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998).
[CrossRef]

Fresenius J. Anal. Chem. (5)

C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).

R. Knopp, F. J. Scherbaum, J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16–20 (1996).
[CrossRef]

H. Emons, B. Hüllenkremer, M. J. Schöning, “Detection of metal ions in aqueous solution by voltohmmetry,” Fresenius J. Anal. Chem. 369(1), 42–46 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. E. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

T. Bundschuh, J.-I. Yun, R. Knopp, “Determination of size, concentration and elemental composition of colloids with laser-induced breakdown detection/spectroscopy (LIBD/S),” Fresenius J. Anal. Chem. 371, 1063–1069 (2001).
[CrossRef]

J. Anal. At. Spectrom. (3)

M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001).
[CrossRef]

R. E. Sturgeon, “Future of atomic spectrometry for environmental analysis,” J. Anal. At. Spectrom. 13(5), 351–361 (1998).
[CrossRef]

S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

J. Anal. Chem. (1)

A. L. Moskvin, L. N. Moskvin, I. A. Ardashnikova, “Systems for continuous water quality control in a flow,” J. Anal. Chem. 55, 1173–1178 (2000).
[CrossRef]

J. Appl. Phys. (1)

Y. Tomita, M. Tsubota, K. Nagane, N. An-naka, “Behavior of laser-induced cavitation bubbles in liquid nitrogen,” J. Appl. Phys. 88, 5993–6001 (2000).
[CrossRef]

J. Clin. Laser Med. Surg. (1)

O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).

J. Mol. Struct. (1)

M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Hosoda, A. Aoshima, T. Itoh, Y. Tsuchiya, “Enhancement of the laser breakdown of simple gaseous and liquid materials under intense picosecond double-pulse excitation,” Jpn. J. Appl. Phys. 38, 3567–3568 (1999).
[CrossRef]

Laser Part. Beams (1)

A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999).
[CrossRef]

Microchem. J. (3)

Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001).
[CrossRef]

L. J. Radziemski, “Review of analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).
[CrossRef]

X. D. Hou, B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
[CrossRef]

Opt. Eng. (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Opt. Lasers Eng. (1)

V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000).
[CrossRef]

Opt. Lett. (1)

Prog. Quantum Electron. (1)

P. K. Kennedy, D. X. Hammer, B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[CrossRef]

Sens. Actuators B (1)

S. B. Saban, R. B. Darling, “Multi-element heavy metal ion sensors for aqueous solutions,” Sens. Actuators B 61, 128–137 (1999).
[CrossRef]

Spectrochim. Acta (3)

L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001).
[CrossRef]

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras, A. González Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001).
[CrossRef]

Spectrochim. Acta Part B (17)

P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
[CrossRef]

A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and dual pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

D. C. S. Beddows, O. Samek, M. Liska, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461–1471 (2002).
[CrossRef]

J. S. Huang, C. B. Ke, L. S. Huang, K. C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta Part B 57, 35–48 (2002).
[CrossRef]

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001).
[CrossRef]

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25–39 (1997).
[CrossRef]

Spectrochim. Acta. Part B (1)

B. Charfi, M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta. Part B 57, 1141–1153 (2002).
[CrossRef]

Talanta (1)

E. Carasek, “A low cost flame atomic absorption spectrometry method for determination of trace metals in aqueous samples,” Talanta 51, 173–178 (2000).
[CrossRef]

Other (6)

O. Samek, M. Liska, J. Kaiser, V. T. Krzyzanek, H. H. Telle, G. Morris, D. C. S. Beddows, “Analysis of liquid samples using laser induced breakdown spectroscopy,” in Optical Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, H. Hu, G. Wang, eds., Proc. SPIE3504, 299–308 (1998).
[CrossRef]

“EPA ground water and drinking water current drinking water standards,” July2002, http://www.epa.gov/cgi-bin/epaprintonly.cgi .

G. A. Theriault, S. H. Lieberman, “Field deployment of a LIBS probe for rapid delineation of metals in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 83–89 (1996).
[CrossRef]

B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997).
[CrossRef]

Y. I. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000), Chap. 3.

D. N. Stratis, K. E. Eland, S. M. Angel, “Dual-pulse LIBS: why are two lasers better than one?,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. T. Spellicy, eds., Proc. SPIE3853, 385–392 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Orientation and order of laser pulses into the sample cell with relative positions of spark alignment in the x, y plane and top (+z) and bottom (-z) collection. (b) Detail of timing scheme utilized for all experiments where E 1 is the first pulse, E 2 is the second pulse, ΔT is the interpulse timing, t d is the gate delay, and t b is the gate width.

Fig. 2
Fig. 2

(a) Effect of spark position for E 2 on observed signal intensity of oxygen at 777 nm. Optimal spark position for E 1 was previously identified and held constant while E 2 was moved in the direction indicated by the arrow in (b) through the focal plane of E 1. Approximate spark overlap [(i)–(iv)] is shown corresponding to the observed signal intensity in (a) [(i)–(iv)].

Fig. 3
Fig. 3

(a) Effect of interpulse timing on observed emission intensity for oxygen at 777 nm (t d = 0.1 µs, t b = 15 µs). The single point (▲) at ΔT = 200 µs is indicative of the greatest observed signal with a single pulse. (b) Observed oxygen emission for dual-pulse LIBS of water (ΔT = 240 µs, t d = 0.1 µs, t b = 15 µs) at 777 nm after optimization (i) compared with a single 250-mJ pulse (ii).

Fig. 4
Fig. 4

Ca emission intensity at 422.7 nm as a function of interpulse timing ΔT. The difference in the shape of this graph when compared with Fig. 3(a) suggests a higher dependence on ΔT for Ca as opposed to oxygen.

Fig. 5
Fig. 5

(a) Ca emission (upper curve) versus background (lower curve) plotted as a function of gate delay t d . (b) and (c) Representative spectra for Ca at delay times of 0.3 and 1.7 µs.

Fig. 6
Fig. 6

Representative spectra of 50-ppm solutions of (a) Ca, (b) Cr, and (c) Zn overlaid on the calibration curves used for determination of their detection limits.

Tables (1)

Tables Icon

Table 1 Experimental Parameters and Detection Limits for this Studya and Comparison with Other Results

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

DL=3σ/S.

Metrics