Abstract

A Q-switched frequency Nd:YAG laser was focused on copper, aluminum, and lead targets. The acoustic emission accompanying plasma formation was acquired and analyzed in both the time and the frequency domains. Spectral analysis of the shock wave has proved to be a simple and low-cost diagnostic of plasma phenomena. In the time domain, several propagation mechanisms of the shock wave were observed and the velocity profile of the shock wave estimated. Spectral measurements were performed in the acoustic propagation regime of the shock waves. Spectral features related to the plasma formation mechanism were identified and discussed for copper, aluminum, and lead on the basis of the physical properties of these elements, the expansion mechanisms of the plasma, and an empirical parameter representative of the transported energy.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Emission analysis of a laser-produced barium plasma plume

R. K. Singh, H. C. Joshi, and Ajai Kumar
Appl. Opt. 54(25) 7673-7678 (2015)

Propagation distance-resolved characteristics of filament-induced copper plasma

Isaac Ghebregziabher, Kyle C. Hartig, and Igor Jovanovic
Opt. Express 24(5) 5263-5276 (2016)

Effect of pulse duration on the acoustic frequency emissions during the laser-induced breakdown of atmospheric air

E. Manikanta, L. Vinoth Kumar, P. Venkateshwarlu, Ch. Leela, and P. Prem Kiran
Appl. Opt. 55(3) 548-555 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription