Abstract

A Q-switched frequency Nd:YAG laser was focused on copper, aluminum, and lead targets. The acoustic emission accompanying plasma formation was acquired and analyzed in both the time and the frequency domains. Spectral analysis of the shock wave has proved to be a simple and low-cost diagnostic of plasma phenomena. In the time domain, several propagation mechanisms of the shock wave were observed and the velocity profile of the shock wave estimated. Spectral measurements were performed in the acoustic propagation regime of the shock waves. Spectral features related to the plasma formation mechanism were identified and discussed for copper, aluminum, and lead on the basis of the physical properties of these elements, the expansion mechanisms of the plasma, and an empirical parameter representative of the transported energy.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z.-W. Hwang, Y. Y. Teng, K.-P. Li, J. Sneddon, “Interaction of a laser beam with metals. I. Quantitative studies of plasma emission,” Appl. Spectrosc. 45, 435–441 (1991).
    [CrossRef]
  2. Y. I. Lee, S. P. Sawan, T. L. Thiem, Y. Y. Teng, J. Sneddon, “Interaction of a laser beam with metals. II. Space-resolved studies of laser-ablated plasma emission,” Appl. Spectrosc. 46, 436–441 (1992).
    [CrossRef]
  3. Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals. III. The effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1598–1604 (1992).
  4. Y. I. Lee, K. Song, H.-K. Cha, J. M. Lee, M. C. Park, G. H. Lee, J. Sneddon, “Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation,” Appl. Spectrosc. 51, 959–964 (1997).
    [CrossRef]
  5. M. Milán, J. M. Vadillo, J. J. Laserna, “Removal of air interference in laser-induced breakdown spectrometry monitored by spatially and temporally resolved charge-coupled device measurements,” J. Anal. At. Spectrom. 12, 441–444 (1997).
    [CrossRef]
  6. L. M. Cabalín, J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723–740 (1998).
    [CrossRef]
  7. E. R. Denoyer, K. J. Fredeen, J. W. Hager, “Laser solid sampling for inductively coupled plasma mass spectrometry,” Anal. Chem. 6, 445A–457A (1991).
  8. J. Marshall, J. Franks, I. Abell, C. Tye, “Determination of trace elements in solid plastic materials by laser ablation-inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 145–150 (1991).
    [CrossRef]
  9. L. M. Cabalín, J. M. Mermet, “Use of normalized relative line intensities for qualitative and semiquantitative analysis in inductively coupled plasma atomic emission spectrometry using a custom segmented-array charge coupled device detector. III. Application to laser ablation,” Appl. Spectrosc. 51, 898–901 (1997).
    [CrossRef]
  10. M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
    [CrossRef]
  11. J. A. Aguilera, C. Aragón, J. Campos, “Determination of carbon content in steel using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 46, 1382–1387 (1992).
    [CrossRef]
  12. I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
    [CrossRef]
  13. S. Palanco, L. M. Cabalín, D. Romero, J. J. Laserna, “Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures,” J. Anal. At. Spectrom. 14, 1883–1887 (1999).
    [CrossRef]
  14. S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
    [CrossRef]
  15. S. Palanco, J. M. Baena, J. J. Laserna, “Open-path laserinduced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta Part B 57, 591–599 (2002).
    [CrossRef]
  16. R. G. Root, “Modeling of post-breakdown phenomena,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1987).
  17. H. M. Pang, D. R. Wiederin, R. S. Houk, E. S. Yeung, “High-repetition-rate laser ablation for elemental analysis in an inductively coupled plasma with acoustic wave normalization,” Anal. Chem. 63, 390–394 (1991).
    [CrossRef]
  18. V. Kanický, V. Otruba, J.-M. Mermet, “Use of internal standardization to compensate for a wide range of absorbance in the analysis of glasses by UV laser ablation inductively coupled plasma atomic emission spectrometry,” Appl. Spectrosc. 52, 638–642 (1998).
    [CrossRef]
  19. J. Diaci, J. Mozina, “A study of blast waveforms detected simultaneously by a microphone and a laser probe during laser ablation,” Appl. Phys. A 55, 352–358 (1992).
    [CrossRef]
  20. L. Grad, J. Mozina, “Acoustic in situ monitoring of excimer laser ablation of different ceramics,” Appl. Surf. Sci. 63, 370–375 (1993).
    [CrossRef]
  21. C. Stauter, P. Gerard, J. Fontaine, T. Engel, “Laser ablation acoustical monitoring,” Appl. Surf. Sci. 109/110, 174–178 (1997).
    [CrossRef]
  22. T. W. Murray, J. W. Wagner, “Laser generation of acoustic waves in the ablative regime,” J. Appl. Phys. 85, 2031–2040 (1999).
    [CrossRef]
  23. W. W. Duley, Y. L. Mao, “The effect of surface condition on acoustic emission during welding of aluminum with CO2 laser radiation,” J. Phys. D 27, 1379–1383 (1994).
    [CrossRef]
  24. D. Farson, K. R. Kim, “Generation of optical and acoustic emissions by laser weld plumes,” J. Appl. Phys. 85, 1329–1336 (1999).
    [CrossRef]
  25. A. Ali, D. Farson, “Statistical classification of spectral data for laser weld quality monitoring,” ASME J. Manuf. Sci. Eng. 124, 323–325 (2002).
    [CrossRef]

2002

S. Palanco, J. M. Baena, J. J. Laserna, “Open-path laserinduced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta Part B 57, 591–599 (2002).
[CrossRef]

A. Ali, D. Farson, “Statistical classification of spectral data for laser weld quality monitoring,” ASME J. Manuf. Sci. Eng. 124, 323–325 (2002).
[CrossRef]

2000

S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

1999

S. Palanco, L. M. Cabalín, D. Romero, J. J. Laserna, “Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures,” J. Anal. At. Spectrom. 14, 1883–1887 (1999).
[CrossRef]

T. W. Murray, J. W. Wagner, “Laser generation of acoustic waves in the ablative regime,” J. Appl. Phys. 85, 2031–2040 (1999).
[CrossRef]

D. Farson, K. R. Kim, “Generation of optical and acoustic emissions by laser weld plumes,” J. Appl. Phys. 85, 1329–1336 (1999).
[CrossRef]

1998

L. M. Cabalín, J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723–740 (1998).
[CrossRef]

V. Kanický, V. Otruba, J.-M. Mermet, “Use of internal standardization to compensate for a wide range of absorbance in the analysis of glasses by UV laser ablation inductively coupled plasma atomic emission spectrometry,” Appl. Spectrosc. 52, 638–642 (1998).
[CrossRef]

1997

1995

1994

W. W. Duley, Y. L. Mao, “The effect of surface condition on acoustic emission during welding of aluminum with CO2 laser radiation,” J. Phys. D 27, 1379–1383 (1994).
[CrossRef]

1993

L. Grad, J. Mozina, “Acoustic in situ monitoring of excimer laser ablation of different ceramics,” Appl. Surf. Sci. 63, 370–375 (1993).
[CrossRef]

1992

J. Diaci, J. Mozina, “A study of blast waveforms detected simultaneously by a microphone and a laser probe during laser ablation,” Appl. Phys. A 55, 352–358 (1992).
[CrossRef]

J. A. Aguilera, C. Aragón, J. Campos, “Determination of carbon content in steel using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 46, 1382–1387 (1992).
[CrossRef]

Y. I. Lee, S. P. Sawan, T. L. Thiem, Y. Y. Teng, J. Sneddon, “Interaction of a laser beam with metals. II. Space-resolved studies of laser-ablated plasma emission,” Appl. Spectrosc. 46, 436–441 (1992).
[CrossRef]

Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals. III. The effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1598–1604 (1992).

1991

E. R. Denoyer, K. J. Fredeen, J. W. Hager, “Laser solid sampling for inductively coupled plasma mass spectrometry,” Anal. Chem. 6, 445A–457A (1991).

J. Marshall, J. Franks, I. Abell, C. Tye, “Determination of trace elements in solid plastic materials by laser ablation-inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 145–150 (1991).
[CrossRef]

H. M. Pang, D. R. Wiederin, R. S. Houk, E. S. Yeung, “High-repetition-rate laser ablation for elemental analysis in an inductively coupled plasma with acoustic wave normalization,” Anal. Chem. 63, 390–394 (1991).
[CrossRef]

Z.-W. Hwang, Y. Y. Teng, K.-P. Li, J. Sneddon, “Interaction of a laser beam with metals. I. Quantitative studies of plasma emission,” Appl. Spectrosc. 45, 435–441 (1991).
[CrossRef]

Abell, I.

J. Marshall, J. Franks, I. Abell, C. Tye, “Determination of trace elements in solid plastic materials by laser ablation-inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 145–150 (1991).
[CrossRef]

Aguilera, J. A.

Ali, A.

A. Ali, D. Farson, “Statistical classification of spectral data for laser weld quality monitoring,” ASME J. Manuf. Sci. Eng. 124, 323–325 (2002).
[CrossRef]

Anzano, J. M.

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

Aragón, C.

Baena, J. M.

S. Palanco, J. M. Baena, J. J. Laserna, “Open-path laserinduced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta Part B 57, 591–599 (2002).
[CrossRef]

Cabalín, L. M.

S. Palanco, L. M. Cabalín, D. Romero, J. J. Laserna, “Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures,” J. Anal. At. Spectrom. 14, 1883–1887 (1999).
[CrossRef]

L. M. Cabalín, J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723–740 (1998).
[CrossRef]

L. M. Cabalín, J. M. Mermet, “Use of normalized relative line intensities for qualitative and semiquantitative analysis in inductively coupled plasma atomic emission spectrometry using a custom segmented-array charge coupled device detector. III. Application to laser ablation,” Appl. Spectrosc. 51, 898–901 (1997).
[CrossRef]

Campos, J.

Cha, H.-K.

Cielo, P.

Denoyer, E. R.

E. R. Denoyer, K. J. Fredeen, J. W. Hager, “Laser solid sampling for inductively coupled plasma mass spectrometry,” Anal. Chem. 6, 445A–457A (1991).

Diaci, J.

J. Diaci, J. Mozina, “A study of blast waveforms detected simultaneously by a microphone and a laser probe during laser ablation,” Appl. Phys. A 55, 352–358 (1992).
[CrossRef]

Duley, W. W.

W. W. Duley, Y. L. Mao, “The effect of surface condition on acoustic emission during welding of aluminum with CO2 laser radiation,” J. Phys. D 27, 1379–1383 (1994).
[CrossRef]

Engel, T.

C. Stauter, P. Gerard, J. Fontaine, T. Engel, “Laser ablation acoustical monitoring,” Appl. Surf. Sci. 109/110, 174–178 (1997).
[CrossRef]

Farson, D.

A. Ali, D. Farson, “Statistical classification of spectral data for laser weld quality monitoring,” ASME J. Manuf. Sci. Eng. 124, 323–325 (2002).
[CrossRef]

D. Farson, K. R. Kim, “Generation of optical and acoustic emissions by laser weld plumes,” J. Appl. Phys. 85, 1329–1336 (1999).
[CrossRef]

Fontaine, J.

C. Stauter, P. Gerard, J. Fontaine, T. Engel, “Laser ablation acoustical monitoring,” Appl. Surf. Sci. 109/110, 174–178 (1997).
[CrossRef]

Franks, J.

J. Marshall, J. Franks, I. Abell, C. Tye, “Determination of trace elements in solid plastic materials by laser ablation-inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 145–150 (1991).
[CrossRef]

Fredeen, K. J.

E. R. Denoyer, K. J. Fredeen, J. W. Hager, “Laser solid sampling for inductively coupled plasma mass spectrometry,” Anal. Chem. 6, 445A–457A (1991).

Gerard, P.

C. Stauter, P. Gerard, J. Fontaine, T. Engel, “Laser ablation acoustical monitoring,” Appl. Surf. Sci. 109/110, 174–178 (1997).
[CrossRef]

Gornushkin, I. B.

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

Grad, L.

L. Grad, J. Mozina, “Acoustic in situ monitoring of excimer laser ablation of different ceramics,” Appl. Surf. Sci. 63, 370–375 (1993).
[CrossRef]

Hager, J. W.

E. R. Denoyer, K. J. Fredeen, J. W. Hager, “Laser solid sampling for inductively coupled plasma mass spectrometry,” Anal. Chem. 6, 445A–457A (1991).

Houk, R. S.

H. M. Pang, D. R. Wiederin, R. S. Houk, E. S. Yeung, “High-repetition-rate laser ablation for elemental analysis in an inductively coupled plasma with acoustic wave normalization,” Anal. Chem. 63, 390–394 (1991).
[CrossRef]

Hwang, Z.-W.

Kanický, V.

Kim, G. H.

Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals. III. The effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1598–1604 (1992).

Kim, K. R.

D. Farson, K. R. Kim, “Generation of optical and acoustic emissions by laser weld plumes,” J. Appl. Phys. 85, 1329–1336 (1999).
[CrossRef]

Laserna, J. J.

S. Palanco, J. M. Baena, J. J. Laserna, “Open-path laserinduced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta Part B 57, 591–599 (2002).
[CrossRef]

S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

S. Palanco, L. M. Cabalín, D. Romero, J. J. Laserna, “Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures,” J. Anal. At. Spectrom. 14, 1883–1887 (1999).
[CrossRef]

L. M. Cabalín, J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723–740 (1998).
[CrossRef]

M. Milán, J. M. Vadillo, J. J. Laserna, “Removal of air interference in laser-induced breakdown spectrometry monitored by spatially and temporally resolved charge-coupled device measurements,” J. Anal. At. Spectrom. 12, 441–444 (1997).
[CrossRef]

Lee, G. H.

Lee, J. M.

Lee, Y. I.

Li, K.-P.

Mao, Y. L.

W. W. Duley, Y. L. Mao, “The effect of surface condition on acoustic emission during welding of aluminum with CO2 laser radiation,” J. Phys. D 27, 1379–1383 (1994).
[CrossRef]

Marshall, J.

J. Marshall, J. Franks, I. Abell, C. Tye, “Determination of trace elements in solid plastic materials by laser ablation-inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 145–150 (1991).
[CrossRef]

Mermet, J. M.

Mermet, J.-M.

Milán, M.

M. Milán, J. M. Vadillo, J. J. Laserna, “Removal of air interference in laser-induced breakdown spectrometry monitored by spatially and temporally resolved charge-coupled device measurements,” J. Anal. At. Spectrom. 12, 441–444 (1997).
[CrossRef]

Mozina, J.

L. Grad, J. Mozina, “Acoustic in situ monitoring of excimer laser ablation of different ceramics,” Appl. Surf. Sci. 63, 370–375 (1993).
[CrossRef]

J. Diaci, J. Mozina, “A study of blast waveforms detected simultaneously by a microphone and a laser probe during laser ablation,” Appl. Phys. A 55, 352–358 (1992).
[CrossRef]

Murray, T. W.

T. W. Murray, J. W. Wagner, “Laser generation of acoustic waves in the ablative regime,” J. Appl. Phys. 85, 2031–2040 (1999).
[CrossRef]

Otruba, V.

Palanco, S.

S. Palanco, J. M. Baena, J. J. Laserna, “Open-path laserinduced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta Part B 57, 591–599 (2002).
[CrossRef]

S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

S. Palanco, L. M. Cabalín, D. Romero, J. J. Laserna, “Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures,” J. Anal. At. Spectrom. 14, 1883–1887 (1999).
[CrossRef]

Pang, H. M.

H. M. Pang, D. R. Wiederin, R. S. Houk, E. S. Yeung, “High-repetition-rate laser ablation for elemental analysis in an inductively coupled plasma with acoustic wave normalization,” Anal. Chem. 63, 390–394 (1991).
[CrossRef]

Park, M. C.

Romero, D.

S. Palanco, L. M. Cabalín, D. Romero, J. J. Laserna, “Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures,” J. Anal. At. Spectrom. 14, 1883–1887 (1999).
[CrossRef]

Root, R. G.

R. G. Root, “Modeling of post-breakdown phenomena,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1987).

Ruiz-Medina, A.

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

Sabsabi, M.

Sawan, S. P.

Smith, B. W.

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

Sneddon, J.

Song, K.

Stauter, C.

C. Stauter, P. Gerard, J. Fontaine, T. Engel, “Laser ablation acoustical monitoring,” Appl. Surf. Sci. 109/110, 174–178 (1997).
[CrossRef]

Teng, Y. Y.

Thiem, T. L.

Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals. III. The effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1598–1604 (1992).

Y. I. Lee, S. P. Sawan, T. L. Thiem, Y. Y. Teng, J. Sneddon, “Interaction of a laser beam with metals. II. Space-resolved studies of laser-ablated plasma emission,” Appl. Spectrosc. 46, 436–441 (1992).
[CrossRef]

Tye, C.

J. Marshall, J. Franks, I. Abell, C. Tye, “Determination of trace elements in solid plastic materials by laser ablation-inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 145–150 (1991).
[CrossRef]

Vadillo, J. M.

M. Milán, J. M. Vadillo, J. J. Laserna, “Removal of air interference in laser-induced breakdown spectrometry monitored by spatially and temporally resolved charge-coupled device measurements,” J. Anal. At. Spectrom. 12, 441–444 (1997).
[CrossRef]

Wagner, J. W.

T. W. Murray, J. W. Wagner, “Laser generation of acoustic waves in the ablative regime,” J. Appl. Phys. 85, 2031–2040 (1999).
[CrossRef]

Wiederin, D. R.

H. M. Pang, D. R. Wiederin, R. S. Houk, E. S. Yeung, “High-repetition-rate laser ablation for elemental analysis in an inductively coupled plasma with acoustic wave normalization,” Anal. Chem. 63, 390–394 (1991).
[CrossRef]

Winefordner, J. D.

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

Yeung, E. S.

H. M. Pang, D. R. Wiederin, R. S. Houk, E. S. Yeung, “High-repetition-rate laser ablation for elemental analysis in an inductively coupled plasma with acoustic wave normalization,” Anal. Chem. 63, 390–394 (1991).
[CrossRef]

Anal. Chem.

E. R. Denoyer, K. J. Fredeen, J. W. Hager, “Laser solid sampling for inductively coupled plasma mass spectrometry,” Anal. Chem. 6, 445A–457A (1991).

H. M. Pang, D. R. Wiederin, R. S. Houk, E. S. Yeung, “High-repetition-rate laser ablation for elemental analysis in an inductively coupled plasma with acoustic wave normalization,” Anal. Chem. 63, 390–394 (1991).
[CrossRef]

Appl. Phys. A

J. Diaci, J. Mozina, “A study of blast waveforms detected simultaneously by a microphone and a laser probe during laser ablation,” Appl. Phys. A 55, 352–358 (1992).
[CrossRef]

Appl. Spectrosc.

Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals. III. The effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1598–1604 (1992).

V. Kanický, V. Otruba, J.-M. Mermet, “Use of internal standardization to compensate for a wide range of absorbance in the analysis of glasses by UV laser ablation inductively coupled plasma atomic emission spectrometry,” Appl. Spectrosc. 52, 638–642 (1998).
[CrossRef]

M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
[CrossRef]

J. A. Aguilera, C. Aragón, J. Campos, “Determination of carbon content in steel using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 46, 1382–1387 (1992).
[CrossRef]

Y. I. Lee, S. P. Sawan, T. L. Thiem, Y. Y. Teng, J. Sneddon, “Interaction of a laser beam with metals. II. Space-resolved studies of laser-ablated plasma emission,” Appl. Spectrosc. 46, 436–441 (1992).
[CrossRef]

Z.-W. Hwang, Y. Y. Teng, K.-P. Li, J. Sneddon, “Interaction of a laser beam with metals. I. Quantitative studies of plasma emission,” Appl. Spectrosc. 45, 435–441 (1991).
[CrossRef]

L. M. Cabalín, J. M. Mermet, “Use of normalized relative line intensities for qualitative and semiquantitative analysis in inductively coupled plasma atomic emission spectrometry using a custom segmented-array charge coupled device detector. III. Application to laser ablation,” Appl. Spectrosc. 51, 898–901 (1997).
[CrossRef]

Y. I. Lee, K. Song, H.-K. Cha, J. M. Lee, M. C. Park, G. H. Lee, J. Sneddon, “Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation,” Appl. Spectrosc. 51, 959–964 (1997).
[CrossRef]

Appl. Surf. Sci.

L. Grad, J. Mozina, “Acoustic in situ monitoring of excimer laser ablation of different ceramics,” Appl. Surf. Sci. 63, 370–375 (1993).
[CrossRef]

C. Stauter, P. Gerard, J. Fontaine, T. Engel, “Laser ablation acoustical monitoring,” Appl. Surf. Sci. 109/110, 174–178 (1997).
[CrossRef]

ASME J. Manuf. Sci. Eng.

A. Ali, D. Farson, “Statistical classification of spectral data for laser weld quality monitoring,” ASME J. Manuf. Sci. Eng. 124, 323–325 (2002).
[CrossRef]

J. Anal. At. Spectrom.

M. Milán, J. M. Vadillo, J. J. Laserna, “Removal of air interference in laser-induced breakdown spectrometry monitored by spatially and temporally resolved charge-coupled device measurements,” J. Anal. At. Spectrom. 12, 441–444 (1997).
[CrossRef]

J. Marshall, J. Franks, I. Abell, C. Tye, “Determination of trace elements in solid plastic materials by laser ablation-inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 145–150 (1991).
[CrossRef]

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[CrossRef]

S. Palanco, L. M. Cabalín, D. Romero, J. J. Laserna, “Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures,” J. Anal. At. Spectrom. 14, 1883–1887 (1999).
[CrossRef]

S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

J. Appl. Phys.

T. W. Murray, J. W. Wagner, “Laser generation of acoustic waves in the ablative regime,” J. Appl. Phys. 85, 2031–2040 (1999).
[CrossRef]

D. Farson, K. R. Kim, “Generation of optical and acoustic emissions by laser weld plumes,” J. Appl. Phys. 85, 1329–1336 (1999).
[CrossRef]

J. Phys. D

W. W. Duley, Y. L. Mao, “The effect of surface condition on acoustic emission during welding of aluminum with CO2 laser radiation,” J. Phys. D 27, 1379–1383 (1994).
[CrossRef]

Spectrochim. Acta Part B

S. Palanco, J. M. Baena, J. J. Laserna, “Open-path laserinduced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta Part B 57, 591–599 (2002).
[CrossRef]

L. M. Cabalín, J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723–740 (1998).
[CrossRef]

Other

R. G. Root, “Modeling of post-breakdown phenomena,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experiment: 1, Nd:YAG laser; 2, folding prism; 3, focusing lens; 4, sample; 5, plasma; 6, microphone; 7, computer; 8, laser power supply.

Fig. 2
Fig. 2

Examples of microphone signals acquired for single laser shots on a previously ablated Al surface at several observation distances. The laser pulse energy was 285 mJ.

Fig. 3
Fig. 3

Propagation of a laser-produced shock wave over an Al target at 285-mJ pulse energy. Inset, enlargement of the curve in a short time domain, showing the various propagation domains of the shock wave.

Fig. 4
Fig. 4

Acoustic spectrum of an Al sample acquired at a distance of 400 mm from the sample. The laser irradiance at the sample surface was ∼1.6 × 1010 W cm-2.

Fig. 5
Fig. 5

Acoustic spectra series obtained at several irradiances for a Cu sample at a distance of 400 mm from the microphone (irradiance in watts per square centimeter).

Fig. 6
Fig. 6

Variation of the AAR as a function of laser irradiance for Cu (■), Al (●), and Pb (▲).

Fig. 7
Fig. 7

Acoustic spectra series obtained at different irradiances for (a) Al and (b) Pb samples at a distance of 400 mm from the microphone (irradiance in watts per square centimeter).

Fig. 8
Fig. 8

E s parameter calculated from the acoustic emission of plasmas for Cu (■), Al (●), Pb (▲), and air (◆) along the irradiance range shown in Figs. 5 7.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Vs=2γ2-1I/ρ01/3,
Es=t1t2 x2tdt,

Metrics