Abstract

The laser-induced breakdown spectroscopy of magnesium, manganese, and chromium atoms by use of a commercial Meinhard nebulizer originally designed for inductively coupled plasma measurements is described. This is the first time, to our knowledge, that this nebulizer has been used for laser-induced breakdown spectroscopy measurements. The limit of detection is slightly lower when the nebulizer rather than a liquid jet is used in single-pulse laser excitation. In addition we present the response characteristics of the nebulizer, such as effects of variations in purge gas and liquid flow rate, that are different from normal operating specifications. The effects of gate delay, gate width, and laser power variations were also studied. The objective of the present research has been to consider a new operating mode and conditions in which a better limit of detection of trace elements in water can be obtained.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Y. Yueh, J. P. Singh, H. Zhang, Laser Induced Breakdown Spectroscopy: Elemental Analysis, Vol. 3 of Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, Chichester, UK, 2000), pp. 2065–2087.
  2. N. H. Cheung, E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66, 929–936 (1994).
    [CrossRef] [PubMed]
  3. S. Saggese, R. Greenwall, “LIBS fiber optic sensor for subsurface heavy metals detection,” in Chemical, Biochemical, and Environmental Fiber Sensors VIII, R. A. Lieberman, ed., Proc. SPIE2836, 195–205 (1997).
    [CrossRef]
  4. B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
    [CrossRef]
  5. V. N. Rai, A. K. Rai, F. Y. Yueh, J. P. Singh, “Optical emission from laser induced breakdown plasma of solid and liquid samples in the presence of a magnetic field,” Appl. Opt. 42, 2085–2093 (2003).
    [CrossRef] [PubMed]
  6. S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K.-I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
    [CrossRef] [PubMed]
  7. V. N. Rai, F. Y. Yueh, J. P. Singh, “Study of laser induced breakdown emission from liquid under double pulse excitation,” Appl. Opt. 42, 2094–2101 (2003).
    [CrossRef] [PubMed]
  8. P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
    [CrossRef]
  9. J. R. Watcher, D. A. Cramers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042–1048 (1987).
    [CrossRef]
  10. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser-induced breakdown spectroscopy technique,” J. Appl. Spectrosc. 51, 1102–1105 (1997).
    [CrossRef]
  11. Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995).
    [CrossRef]
  12. W. F. Ho, C. W. Ng, N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength,” Appl. Spectrosc. 51, 87–91 (1997).
    [CrossRef]
  13. D. E. Poulain, D. R. Alexander, “Influences on concentration measurements of liquid aerosols by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 49, 569–579 (1995).
    [CrossRef]
  14. R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
    [CrossRef]
  15. M. Martin, M. Cheng, “Detection of chromium aerosol using time-resolved laser-induced plasma spectroscopy,” Appl. Spectrosc. 54, 1279–1285 (2000).
    [CrossRef]
  16. D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Henchen, “Aerosol generation system for development and calibration of laser induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
    [CrossRef]
  17. F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of potential of laser-induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manage. Assoc. 52, 1307–1315 (2002).
    [CrossRef]
  18. http://www.meinhard.com/nebulizers.html .
  19. S. H. Nam, Y. J. Kim, “Excitation temperature and electron number density measured for end-on-view inductively coupled plasma discharge,” Bull. Korean Chem. Soc. 22, 827–832 (2001).

2003

2002

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of potential of laser-induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manage. Assoc. 52, 1307–1315 (2002).
[CrossRef]

2001

S. H. Nam, Y. J. Kim, “Excitation temperature and electron number density measured for end-on-view inductively coupled plasma discharge,” Bull. Korean Chem. Soc. 22, 827–832 (2001).

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Henchen, “Aerosol generation system for development and calibration of laser induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

2000

1997

W. F. Ho, C. W. Ng, N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength,” Appl. Spectrosc. 51, 87–91 (1997).
[CrossRef]

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser-induced breakdown spectroscopy technique,” J. Appl. Spectrosc. 51, 1102–1105 (1997).
[CrossRef]

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

1996

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K.-I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

1995

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995).
[CrossRef]

D. E. Poulain, D. R. Alexander, “Influences on concentration measurements of liquid aerosols by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 49, 569–579 (1995).
[CrossRef]

1994

N. H. Cheung, E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66, 929–936 (1994).
[CrossRef] [PubMed]

1987

Alexander, D. R.

Angel, S. M.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Arca, G.

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser-induced breakdown spectroscopy technique,” J. Appl. Spectrosc. 51, 1102–1105 (1997).
[CrossRef]

Arsenault, G. R.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Henchen, “Aerosol generation system for development and calibration of laser induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Carranza, J. E.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Henchen, “Aerosol generation system for development and calibration of laser induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Cavalli, P.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Cheng, M.

Cheung, N. H.

W. F. Ho, C. W. Ng, N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength,” Appl. Spectrosc. 51, 87–91 (1997).
[CrossRef]

N. H. Cheung, E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66, 929–936 (1994).
[CrossRef] [PubMed]

Ciucci, A.

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser-induced breakdown spectroscopy technique,” J. Appl. Spectrosc. 51, 1102–1105 (1997).
[CrossRef]

Cramers, D. A.

Fichet, P.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Goode, S. R.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Greenwall, R.

S. Saggese, R. Greenwall, “LIBS fiber optic sensor for subsurface heavy metals detection,” in Chemical, Biochemical, and Environmental Fiber Sensors VIII, R. A. Lieberman, ed., Proc. SPIE2836, 195–205 (1997).
[CrossRef]

Hahn, D. W.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Henchen, “Aerosol generation system for development and calibration of laser induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Henchen, K. R.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Henchen, “Aerosol generation system for development and calibration of laser induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Hiraga, H.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K.-I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Ho, W. F.

Ito, Y.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K.-I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995).
[CrossRef]

Johnsen, H. A.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Henchen, “Aerosol generation system for development and calibration of laser induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Kaneko, K.-I.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K.-I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Kim, Y. J.

S. H. Nam, Y. J. Kim, “Excitation temperature and electron number density measured for end-on-view inductively coupled plasma discharge,” Bull. Korean Chem. Soc. 22, 827–832 (2001).

Marquardt, B. J.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Martin, M.

Mauchien, P.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Moulin, C.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Nakamura, S.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K.-I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995).
[CrossRef]

Nam, S. H.

S. H. Nam, Y. J. Kim, “Excitation temperature and electron number density measured for end-on-view inductively coupled plasma discharge,” Bull. Korean Chem. Soc. 22, 827–832 (2001).

Neuhauser, R. E.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Ng, C. W.

Niessner, R.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Omenetto, N.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Palleschi, V.

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser-induced breakdown spectroscopy technique,” J. Appl. Spectrosc. 51, 1102–1105 (1997).
[CrossRef]

Panne, U.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Petrucci, G. A.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Poulain, D. E.

Rai, A. K.

Rai, V. N.

Rastelli, S.

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser-induced breakdown spectroscopy technique,” J. Appl. Spectrosc. 51, 1102–1105 (1997).
[CrossRef]

Saggese, S.

S. Saggese, R. Greenwall, “LIBS fiber optic sensor for subsurface heavy metals detection,” in Chemical, Biochemical, and Environmental Fiber Sensors VIII, R. A. Lieberman, ed., Proc. SPIE2836, 195–205 (1997).
[CrossRef]

Sharma, R. C.

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of potential of laser-induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manage. Assoc. 52, 1307–1315 (2002).
[CrossRef]

Singh, J. P.

V. N. Rai, A. K. Rai, F. Y. Yueh, J. P. Singh, “Optical emission from laser induced breakdown plasma of solid and liquid samples in the presence of a magnetic field,” Appl. Opt. 42, 2085–2093 (2003).
[CrossRef] [PubMed]

V. N. Rai, F. Y. Yueh, J. P. Singh, “Study of laser induced breakdown emission from liquid under double pulse excitation,” Appl. Opt. 42, 2094–2101 (2003).
[CrossRef] [PubMed]

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of potential of laser-induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manage. Assoc. 52, 1307–1315 (2002).
[CrossRef]

F. Y. Yueh, J. P. Singh, H. Zhang, Laser Induced Breakdown Spectroscopy: Elemental Analysis, Vol. 3 of Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, Chichester, UK, 2000), pp. 2065–2087.

Sone, K.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K.-I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

Spenser, W. A.

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of potential of laser-induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manage. Assoc. 52, 1307–1315 (2002).
[CrossRef]

Tognoni, E.

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser-induced breakdown spectroscopy technique,” J. Appl. Spectrosc. 51, 1102–1105 (1997).
[CrossRef]

Ueki, O.

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995).
[CrossRef]

Wagner, J. F.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Watcher, J. R.

Yeung, E. S.

N. H. Cheung, E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66, 929–936 (1994).
[CrossRef] [PubMed]

Yueh, F. Y.

V. N. Rai, F. Y. Yueh, J. P. Singh, “Study of laser induced breakdown emission from liquid under double pulse excitation,” Appl. Opt. 42, 2094–2101 (2003).
[CrossRef] [PubMed]

V. N. Rai, A. K. Rai, F. Y. Yueh, J. P. Singh, “Optical emission from laser induced breakdown plasma of solid and liquid samples in the presence of a magnetic field,” Appl. Opt. 42, 2085–2093 (2003).
[CrossRef] [PubMed]

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of potential of laser-induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manage. Assoc. 52, 1307–1315 (2002).
[CrossRef]

F. Y. Yueh, J. P. Singh, H. Zhang, Laser Induced Breakdown Spectroscopy: Elemental Analysis, Vol. 3 of Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, Chichester, UK, 2000), pp. 2065–2087.

Zhang, H.

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of potential of laser-induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manage. Assoc. 52, 1307–1315 (2002).
[CrossRef]

F. Y. Yueh, J. P. Singh, H. Zhang, Laser Induced Breakdown Spectroscopy: Elemental Analysis, Vol. 3 of Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, Chichester, UK, 2000), pp. 2065–2087.

Anal. Chem.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K.-I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996).
[CrossRef] [PubMed]

N. H. Cheung, E. S. Yeung, “Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow,” Anal. Chem. 66, 929–936 (1994).
[CrossRef] [PubMed]

Anal. Chim. Acta

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995).
[CrossRef]

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Bull. Korean Chem. Soc.

S. H. Nam, Y. J. Kim, “Excitation temperature and electron number density measured for end-on-view inductively coupled plasma discharge,” Bull. Korean Chem. Soc. 22, 827–832 (2001).

J. Air Waste Manage. Assoc.

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of potential of laser-induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manage. Assoc. 52, 1307–1315 (2002).
[CrossRef]

J. Appl. Spectrosc.

G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser-induced breakdown spectroscopy technique,” J. Appl. Spectrosc. 51, 1102–1105 (1997).
[CrossRef]

Rev. Sci. Instrum.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Henchen, “Aerosol generation system for development and calibration of laser induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Other

S. Saggese, R. Greenwall, “LIBS fiber optic sensor for subsurface heavy metals detection,” in Chemical, Biochemical, and Environmental Fiber Sensors VIII, R. A. Lieberman, ed., Proc. SPIE2836, 195–205 (1997).
[CrossRef]

http://www.meinhard.com/nebulizers.html .

F. Y. Yueh, J. P. Singh, H. Zhang, Laser Induced Breakdown Spectroscopy: Elemental Analysis, Vol. 3 of Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, Chichester, UK, 2000), pp. 2065–2087.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for using the Meinhard Nebulizer to record the LIBS spectrum: BD, beam dump; DM, dichroic mirror; FO, fiber optics; HS, harmonic separator; L’s, lenses; 2×, KDP doubler; ICCD, intensified charge-coupled device.

Fig. 2
Fig. 2

(a) Variation of LIBS signal with increasing gas flow rates of Ar and He for the 279.5-nm ion line of Mg at a constant liquid solution flow rate of 3.5 ml/min: 1 ppm Mg; gate delay, 2.0 µs; gate width, 10 µs. (b) Variation of LIBS signal with increasing gas flow rate of Ar and He for the 285.2-nm neutral line of Mg at a constant liquid solution flow rate of 3.5 ml/min: 1 ppm Mg; gate delay, 2.0 µs; gate width, 10 µs.

Fig. 3
Fig. 3

Variation of LIBS signal with increasing liquid flow rate for the 279.5-, 280.2-, and 285.2-nm lines of Mg at a constant He gas flow rate of 500 ml/min.

Fig. 4
Fig. 4

Effect of variation in laser energy on the LIBS signal for three lines of Mg: 1 ppm Mg; gate delay, 1 µs; gate width, 10 µs.

Fig. 5
Fig. 5

Effect of variation in gate delay (a) on the LIBS signal for three lines of Mg (1 ppm Mg; laser pulse energy, 190 mJ, gate width, 10 µs), (b) on signal-to-noise ratio for three lines of Mg (1 ppm Mg; laser pulse energy, 190 mJ; gate delay, 1 µs; gate width, 10 µs), and (c) on signal-to-background ratio for three lines of Mg (1 ppm Mg; laser pulse energy, 190 mJ; gate width, 10 µs).

Fig. 6
Fig. 6

Calibration by single-pulse LIBS with a Meinhard nebulizer of the curve for Mg in water with 2% HNO3: laser pulse energy, 220 mJ; gate delay, 1.5 µs; gate width, 10 µs.

Fig. 7
Fig. 7

(a) Comparison of relative standard deviation [RSD %] in mist and jet modes for Mg at several concentrations. (b) Comparison with a Meinhard nebulizer of calibration curves of Mg in mist and jet modes: laser pulse energy, 220 mJ; gate delay, 1.5 µs; gate width, 10 µs.

Fig. 8
Fig. 8

Comparison with a Meinhard nebulizer of the LIBS signal of a 5-ppm solution of Mg in mist and jet modes: laser pulse energy, 220 mJ; gate delay, 1.5 µs; gate width, 10 µs.

Fig. 9
Fig. 9

Calibration curve by a Meinhard nebulizer of Mn at 403 nm: laser pulse energy, 190 mJ; gate delay, 1. µs; gate width, 10 µs.

Fig. 10
Fig. 10

Calibration curve by a Meinhard nebulizer of Cr at 359 nm: laser pulse energy, 170 mJ; gate delay, 6. µs; gate width, 10 µs.

Tables (1)

Tables Icon

Table 1 Comparison of Limits of Detection of Three Elements

Metrics