Abstract

An experimental setup is described for measuring laser-induced plasma emission spectra in the near vacuum UV with a Czerny-Turner spectrograph and intensified charge-coupled device under atmospheric pressure. With a simple gas-purge technique, emission lines down to 130 nm could be recorded. The strongest emission lines of bromine, chlorine, and iodine in the near vacuum UV are easily detected.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252–1256 (1983).
    [CrossRef]
  2. C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced breakdown spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
    [CrossRef]
  3. R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998).
    [CrossRef]
  4. L. M. Berman, P. J. Wolf, “Laser-induced breakdown spectroscopy of liquids: aqueous solutions of nickel and chlorinated hydrocarbons,” Appl. Spectrosc. 52, 438–443 (1998).
    [CrossRef]
  5. L. Dudragne, P. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detectuin of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
    [CrossRef]
  6. E. D. Lancaster, K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Spectroscopic analysis of fire suppressants and refrigerants by laser-induced breakdown spectroscopy,” Appl. Opt. 38, 1476–1480 (1999).
    [CrossRef]
  7. M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl, and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
    [CrossRef]
  8. M. A. Khater, P. van Kampen, J. T. Costello, J. P. Mosnier, E. T. Kennedy, “Time-integrated laser-induced plasma spectroscopy in the vacuum ultraviolet for the quantitative elemental characterization of steel alloys,” J. Phys. D. 33, 2252–2262 (2000).
    [CrossRef]
  9. M. A. Khater, J. T. Costello, E. T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits,” Appl. Spectrosc. 56, 970–982 (2002).
    [CrossRef]
  10. C. J. Lorenzen, C. Carlhoff, U. Hahn, M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029–1035 (1992).
    [CrossRef]
  11. A. González, M. Ortiz, J. Campos, “Determination of sulfur content in steel by laser-produced plasma atomic emission spectroscopy,” Appl. Spectrosc. 49, 1632–1635 (1995).
    [CrossRef]
  12. V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
    [CrossRef]
  13. M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis— comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta Part B 56, 661–669 (2001).
    [CrossRef]
  14. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. ActaPart B 56, 637–649 (2001).
    [CrossRef]
  15. C. Aragón, J. A. Aquilera, F. Penalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
    [CrossRef]
  16. W. Sdorra, K. Niemax, “Basic inverstigations for laser microanalysis III: application of different buffer gases for laser-produced sample plumes,” Mikrochim. Acta 107, 319–327 (1992).
    [CrossRef]

2002

2001

M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl, and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
[CrossRef]

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis— comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta Part B 56, 661–669 (2001).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. ActaPart B 56, 637–649 (2001).
[CrossRef]

2000

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

M. A. Khater, P. van Kampen, J. T. Costello, J. P. Mosnier, E. T. Kennedy, “Time-integrated laser-induced plasma spectroscopy in the vacuum ultraviolet for the quantitative elemental characterization of steel alloys,” J. Phys. D. 33, 2252–2262 (2000).
[CrossRef]

1999

1998

1996

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced breakdown spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

1995

1992

W. Sdorra, K. Niemax, “Basic inverstigations for laser microanalysis III: application of different buffer gases for laser-produced sample plumes,” Mikrochim. Acta 107, 319–327 (1992).
[CrossRef]

C. J. Lorenzen, C. Carlhoff, U. Hahn, M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029–1035 (1992).
[CrossRef]

1983

D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252–1256 (1983).
[CrossRef]

Adam, P.

Amouroux, J.

Aquilera, J. A.

Aragón, C.

Berman, L. M.

Bette, H.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. ActaPart B 56, 637–649 (2001).
[CrossRef]

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. ActaPart B 56, 637–649 (2001).
[CrossRef]

Campos, J.

Carlhoff, C.

C. J. Lorenzen, C. Carlhoff, U. Hahn, M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029–1035 (1992).
[CrossRef]

Costello, J. T.

M. A. Khater, J. T. Costello, E. T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits,” Appl. Spectrosc. 56, 970–982 (2002).
[CrossRef]

M. A. Khater, P. van Kampen, J. T. Costello, J. P. Mosnier, E. T. Kennedy, “Time-integrated laser-induced plasma spectroscopy in the vacuum ultraviolet for the quantitative elemental characterization of steel alloys,” J. Phys. D. 33, 2252–2262 (2000).
[CrossRef]

Couris, S.

Cremers, D. A.

D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252–1256 (1983).
[CrossRef]

Daniel, R. G.

Dudragne, L.

Falk, H.

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis— comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta Part B 56, 661–669 (2001).
[CrossRef]

Fotakis, C.

González, A.

Hahn, U.

C. J. Lorenzen, C. Carlhoff, U. Hahn, M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029–1035 (1992).
[CrossRef]

Haisch, C.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced breakdown spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Hatziapostolou, A.

Hemmerlin, M.

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis— comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta Part B 56, 661–669 (2001).
[CrossRef]

Jogwich, M.

C. J. Lorenzen, C. Carlhoff, U. Hahn, M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029–1035 (1992).
[CrossRef]

Kennedy, E. T.

M. A. Khater, J. T. Costello, E. T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits,” Appl. Spectrosc. 56, 970–982 (2002).
[CrossRef]

M. A. Khater, P. van Kampen, J. T. Costello, J. P. Mosnier, E. T. Kennedy, “Time-integrated laser-induced plasma spectroscopy in the vacuum ultraviolet for the quantitative elemental characterization of steel alloys,” J. Phys. D. 33, 2252–2262 (2000).
[CrossRef]

Khater, M. A.

M. A. Khater, J. T. Costello, E. T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits,” Appl. Spectrosc. 56, 970–982 (2002).
[CrossRef]

M. A. Khater, P. van Kampen, J. T. Costello, J. P. Mosnier, E. T. Kennedy, “Time-integrated laser-induced plasma spectroscopy in the vacuum ultraviolet for the quantitative elemental characterization of steel alloys,” J. Phys. D. 33, 2252–2262 (2000).
[CrossRef]

Krause, H.

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. ActaPart B 56, 637–649 (2001).
[CrossRef]

Lancaster, E. D.

Larrauri, E.

Lorenzen, C. J.

C. J. Lorenzen, C. Carlhoff, U. Hahn, M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029–1035 (1992).
[CrossRef]

Matveev, O. I.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced breakdown spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Mavromanolakis, A.

McNesby, K. L.

Meilland, R.

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis— comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta Part B 56, 661–669 (2001).
[CrossRef]

Miguel, R.

Miziolek, A. W.

Monch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. ActaPart B 56, 637–649 (2001).
[CrossRef]

Mönch, I.

Mosnier, J. P.

M. A. Khater, P. van Kampen, J. T. Costello, J. P. Mosnier, E. T. Kennedy, “Time-integrated laser-induced plasma spectroscopy in the vacuum ultraviolet for the quantitative elemental characterization of steel alloys,” J. Phys. D. 33, 2252–2262 (2000).
[CrossRef]

Niemax, K.

W. Sdorra, K. Niemax, “Basic inverstigations for laser microanalysis III: application of different buffer gases for laser-produced sample plumes,” Mikrochim. Acta 107, 319–327 (1992).
[CrossRef]

Niessner, R.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced breakdown spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Noll, R.

Omenetto, N.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced breakdown spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Ortiz, M.

Panne, U.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced breakdown spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Paulard, L.

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis— comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta Part B 56, 661–669 (2001).
[CrossRef]

Penalba, F.

Peter, L.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. ActaPart B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Radziemski, L. J.

D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252–1256 (1983).
[CrossRef]

Sattmann, R.

Sdorra, W.

W. Sdorra, K. Niemax, “Basic inverstigations for laser microanalysis III: application of different buffer gases for laser-produced sample plumes,” Mikrochim. Acta 107, 319–327 (1992).
[CrossRef]

Smith, B. W.

Sturm, V.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. ActaPart B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Sun, Q.

Tran, M.

van Kampen, P.

M. A. Khater, P. van Kampen, J. T. Costello, J. P. Mosnier, E. T. Kennedy, “Time-integrated laser-induced plasma spectroscopy in the vacuum ultraviolet for the quantitative elemental characterization of steel alloys,” J. Phys. D. 33, 2252–2262 (2000).
[CrossRef]

Winefordner, J. D.

Wintjens, P.

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis— comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta Part B 56, 661–669 (2001).
[CrossRef]

Wolf, P. J.

Anal. Chem.

D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252–1256 (1983).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl, and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
[CrossRef]

M. A. Khater, J. T. Costello, E. T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits,” Appl. Spectrosc. 56, 970–982 (2002).
[CrossRef]

R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998).
[CrossRef]

L. M. Berman, P. J. Wolf, “Laser-induced breakdown spectroscopy of liquids: aqueous solutions of nickel and chlorinated hydrocarbons,” Appl. Spectrosc. 52, 438–443 (1998).
[CrossRef]

L. Dudragne, P. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detectuin of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
[CrossRef]

A. González, M. Ortiz, J. Campos, “Determination of sulfur content in steel by laser-produced plasma atomic emission spectroscopy,” Appl. Spectrosc. 49, 1632–1635 (1995).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

C. Aragón, J. A. Aquilera, F. Penalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

Fresenius J. Anal. Chem.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced breakdown spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

J. Anal. At. Spectrom.

C. J. Lorenzen, C. Carlhoff, U. Hahn, M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029–1035 (1992).
[CrossRef]

J. Phys. D.

M. A. Khater, P. van Kampen, J. T. Costello, J. P. Mosnier, E. T. Kennedy, “Time-integrated laser-induced plasma spectroscopy in the vacuum ultraviolet for the quantitative elemental characterization of steel alloys,” J. Phys. D. 33, 2252–2262 (2000).
[CrossRef]

Mikrochim. Acta

W. Sdorra, K. Niemax, “Basic inverstigations for laser microanalysis III: application of different buffer gases for laser-produced sample plumes,” Mikrochim. Acta 107, 319–327 (1992).
[CrossRef]

Spectrochim. Acta Part B

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis— comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta Part B 56, 661–669 (2001).
[CrossRef]

Spectrochim. ActaPart B

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. ActaPart B 56, 637–649 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Two purge gas arrangements used to remove atmospheric absorption in the near-VUV measurements.

Fig. 2
Fig. 2

Chlorine emission lines in the near VUV. The emission lines from the nitrogen purge gas are marked on the spectrum.

Fig. 3
Fig. 3

Bromine emission lines in the near VUV. Observe that a bromine line overlaps with nitrogen lines at ∼149 nm.

Fig. 4
Fig. 4

Iodine emission lines in the near VUV. The resonance line at ∼178 nm shows strong self-absorption (marked by an arrow).

Fig. 5
Fig. 5

Chlorine line intensities, A, under argon purge and, B, under nitrogen purge.

Fig. 6
Fig. 6

Emission lines from a fly-ash sample measured with a quartz-optics ICCD.

Fig. 7
Fig. 7

Atmospheric absorption below 186 nm, A, under nitrogen flow and, B, in ambient air. The spectra were normalized to the same intensity at 189 nm.

Metrics