Abstract

Schemes of conditional data processing are evaluated based on either the peak-to-base ratio or the signal-to-noise ratio as a metric for analyte detection in single-shot laser-induced breakdown spectra. The analyte signal investigated is the 288.1-nm Si i emission line provided by an aerosol stream of monodisperse 2.5-µm-sized silica microspheres. Both the Si emission line and a spectral region corresponding to continuum emission are used to evaluate the statistical distribution of spectral noise. The probability of false hits is determined by evaluating various conditional processing thresholds. As the detection threshold increases, the rate of detected silica particle hits decreases along with the expected fraction of false-particle hits (i.e., spectral noise). For all threshold values the signal-to-noise ratio is found to provide a more robust metric for single-shot analyte detection compared with the peak-to-base ratio.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U.S. Environmental Protection Agency, Revised Standards for Hazardous Waste Combustors, Federal Register 61(77) 17,357–17,358 (1996).
  2. U.S. National Research Council, Research Priorities for Airborne Particulate Matter: II. Evaluating Research Progress and Updating the Portfolio (National Academies Press, Washington, D.C., 1999).
  3. J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).
  4. D. K. Ottesen, J. C. F. Wang, L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Appl. Spectrosc. 43, 967–976 (1989).
    [CrossRef]
  5. K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission-spectrometry in liquid aerosols,” Anal. Chim. Acta 269, 123–128 (1992).
    [CrossRef]
  6. S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
    [CrossRef]
  7. M. H. Nunez, P. Cavalli, G. Petrucci, N. Omenetto, “Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation,” Appl. Spectrosc. 54, 1805–1816 (2000).
    [CrossRef]
  8. R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
    [CrossRef]
  9. J. P. Singh, F. Y. Yueh, H. S. Zhang, R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).
  10. R. E. Neuhauser, U. Panne, R. Niessner, P. Wilbring, “On-line monitoring of chromium aerosols in industrial exhaust streams by laser-induced plasma spectroscopy (LIPS),” Fresenius J. Anal. Chem. 364, 720–726 (1999).
    [CrossRef]
  11. J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
    [CrossRef]
  12. D. W. Hahn, M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30–48 (2000).
    [CrossRef]
  13. D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1845 (1997).
    [CrossRef]
  14. D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
    [CrossRef]
  15. J. E. Carranza, D. W. Hahn, “Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrosc. 74, 5450–5454 (2002).
  16. J. E. Carranza, D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
    [CrossRef] [PubMed]

2002 (2)

J. E. Carranza, D. W. Hahn, “Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrosc. 74, 5450–5454 (2002).

J. E. Carranza, D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
[CrossRef] [PubMed]

2001 (2)

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

2000 (2)

D. W. Hahn, M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30–48 (2000).
[CrossRef]

M. H. Nunez, P. Cavalli, G. Petrucci, N. Omenetto, “Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation,” Appl. Spectrosc. 54, 1805–1816 (2000).
[CrossRef]

1999 (1)

R. E. Neuhauser, U. Panne, R. Niessner, P. Wilbring, “On-line monitoring of chromium aerosols in industrial exhaust streams by laser-induced plasma spectroscopy (LIPS),” Fresenius J. Anal. Chem. 364, 720–726 (1999).
[CrossRef]

1997 (3)

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

J. P. Singh, F. Y. Yueh, H. S. Zhang, R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1845 (1997).
[CrossRef]

1996 (2)

U.S. Environmental Protection Agency, Revised Standards for Hazardous Waste Combustors, Federal Register 61(77) 17,357–17,358 (1996).

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
[CrossRef]

1992 (1)

K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission-spectrometry in liquid aerosols,” Anal. Chim. Acta 269, 123–128 (1992).
[CrossRef]

1989 (1)

Arsenault, G. R.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Ayala, N. L.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission-spectrometry in liquid aerosols,” Anal. Chim. Acta 269, 123–128 (1992).
[CrossRef]

Carranza, J. E.

J. E. Carranza, D. W. Hahn, “Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrosc. 74, 5450–5454 (2002).

J. E. Carranza, D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
[CrossRef] [PubMed]

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Cavalli, P.

M. H. Nunez, P. Cavalli, G. Petrucci, N. Omenetto, “Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation,” Appl. Spectrosc. 54, 1805–1816 (2000).
[CrossRef]

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Cook, R. L.

J. P. Singh, F. Y. Yueh, H. S. Zhang, R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).

Crosley, D. R.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
[CrossRef]

Faris, G. W.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
[CrossRef]

Fisher, B. T.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Flower, W. L.

Hahn, D. W.

J. E. Carranza, D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
[CrossRef] [PubMed]

J. E. Carranza, D. W. Hahn, “Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrosc. 74, 5450–5454 (2002).

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

D. W. Hahn, M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30–48 (2000).
[CrossRef]

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1845 (1997).
[CrossRef]

Hencken, K. R.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1845 (1997).
[CrossRef]

Johnsen, H. A.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Lunden, M. M.

D. W. Hahn, M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30–48 (2000).
[CrossRef]

Neuhauser, R. E.

R. E. Neuhauser, U. Panne, R. Niessner, P. Wilbring, “On-line monitoring of chromium aerosols in industrial exhaust streams by laser-induced plasma spectroscopy (LIPS),” Fresenius J. Anal. Chem. 364, 720–726 (1999).
[CrossRef]

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Ng, K. C.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission-spectrometry in liquid aerosols,” Anal. Chim. Acta 269, 123–128 (1992).
[CrossRef]

Niessner, R.

R. E. Neuhauser, U. Panne, R. Niessner, P. Wilbring, “On-line monitoring of chromium aerosols in industrial exhaust streams by laser-induced plasma spectroscopy (LIPS),” Fresenius J. Anal. Chem. 364, 720–726 (1999).
[CrossRef]

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Nunez, M. H.

Omenetto, N.

M. H. Nunez, P. Cavalli, G. Petrucci, N. Omenetto, “Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation,” Appl. Spectrosc. 54, 1805–1816 (2000).
[CrossRef]

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Ottesen, D. K.

Pandis, S. N.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).

Panne, U.

R. E. Neuhauser, U. Panne, R. Niessner, P. Wilbring, “On-line monitoring of chromium aerosols in industrial exhaust streams by laser-induced plasma spectroscopy (LIPS),” Fresenius J. Anal. Chem. 364, 720–726 (1999).
[CrossRef]

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Petrucci, G.

Petrucci, G. A.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Radziemski, L. J.

Seinfeld, J. H.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).

Simeonsson, J. B.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission-spectrometry in liquid aerosols,” Anal. Chim. Acta 269, 123–128 (1992).
[CrossRef]

Singh, J. P.

J. P. Singh, F. Y. Yueh, H. S. Zhang, R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).

Smith, G. P.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
[CrossRef]

Wang, J. C. F.

Wilbring, P.

R. E. Neuhauser, U. Panne, R. Niessner, P. Wilbring, “On-line monitoring of chromium aerosols in industrial exhaust streams by laser-induced plasma spectroscopy (LIPS),” Fresenius J. Anal. Chem. 364, 720–726 (1999).
[CrossRef]

Winefordner, J. D.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission-spectrometry in liquid aerosols,” Anal. Chim. Acta 269, 123–128 (1992).
[CrossRef]

Yalcin, S.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
[CrossRef]

Yoder, G. D.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Yueh, F. Y.

J. P. Singh, F. Y. Yueh, H. S. Zhang, R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).

Zhang, H. S.

J. P. Singh, F. Y. Yueh, H. S. Zhang, R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).

Aerosol Sci. Technol. (1)

D. W. Hahn, M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30–48 (2000).
[CrossRef]

Anal. Chem. (1)

J. E. Carranza, D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
[CrossRef] [PubMed]

Anal. Chim. Acta (2)

K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission-spectrometry in liquid aerosols,” Anal. Chim. Acta 269, 123–128 (1992).
[CrossRef]

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, N. Omenetto, “On-line and in situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Appl. Spectrosc. (3)

Federal Register (1)

U.S. Environmental Protection Agency, Revised Standards for Hazardous Waste Combustors, Federal Register 61(77) 17,357–17,358 (1996).

Fresenius J. Anal. Chem. (1)

R. E. Neuhauser, U. Panne, R. Niessner, P. Wilbring, “On-line monitoring of chromium aerosols in industrial exhaust streams by laser-induced plasma spectroscopy (LIPS),” Fresenius J. Anal. Chem. 364, 720–726 (1999).
[CrossRef]

Hazard. Waste Hazard. Mater. (1)

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
[CrossRef]

J. Anal. At. Spectrosc. (1)

J. E. Carranza, D. W. Hahn, “Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrosc. 74, 5450–5454 (2002).

Process Control Qual. (1)

J. P. Singh, F. Y. Yueh, H. S. Zhang, R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).

Rev. Sci. Instrum. (1)

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Spectrochim. Acta Part B (1)

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Other (2)

U.S. National Research Council, Research Priorities for Airborne Particulate Matter: II. Evaluating Research Progress and Updating the Portfolio (National Academies Press, Washington, D.C., 1999).

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cumulative distribution of the P/B ratio for the 288.1-nm silicon emission line (on peak) and the adjacent continuum region (off peak) for data set A. The threshold value corresponds to a 0.5% false-hit rate.

Fig. 2
Fig. 2

Cumulative distribution of the SNR for the 288.1-nm silicon emission line (on peak) and the adjacent continuum region (off peak) for data set A. The threshold values correspond to 0.05% and 0.5% false-hit rates.

Fig. 3
Fig. 3

Cumulative distribution of the SNR for the 288.1-nm silicon emission line (on peak) and the adjacent continuum region (off peak) for both data sets, A and B. The y axis has been expanded to emphasize the smaller SNR values.

Fig. 4
Fig. 4

Venn diagram of the conditionally analyzed particle hits when the P/B and SNR approaches are used for data set A at thresholds values corresponding to either 0.5% and 0.05% false-hit rates.

Fig. 5
Fig. 5

Ensemble-averaged spectra of particle hits (288.1-nm Si line) processed when the P/B and SNR approaches are used at a 0.5% false-hit rate corresponding to the Venn diagram in Fig. 4. Note that the total number of spectra averaged for each spectrum is different, as listed in Fig. 4.

Fig. 6
Fig. 6

Single-shot spectra of particle hits (288.1-nm Si line) as identified when the SNR approach is used along with the corresponding ensemble-averaged spectrum of the entire SNR data set corresponding to the data from the 0.5% false-hit rate of Figs. 4 and 5. All spectra have the same scale and have been shifted vertically for clarity.

Fig. 7
Fig. 7

Influence of the conditional processing threshold on the silica-particle-hit rate (on peak) and the corresponding expected false-hit rate (as a percentage of total hits) for data set A.

Fig. 8
Fig. 8

Influence of the conditional processing threshold on the average P/B intensity of the silica emission line (on peak) for identified hits along with the corresponding P/B intensity of the expected noise and the expected noise as a weighted percentage of the on-peak signal.

Metrics