Abstract

The performance and sensitivity of an intensified CCD array system and a nonintensified CCD array detector system are compared for laser-induced breakdown spectroscopy (LIBS). LIBS measurements were recorded in a calcium-based aerosol-seeded gas stream at ambient pressure. The signal-to-noise ratio based on the 393.37-nm calcium emission line was calculated as a function of detector delay with respect to the plasma-initiating laser pulse. Both ensemble-averaging and single-shot spectral analyses were performed. For all conditions, the intensified CCD system provided an enhanced signal-to-noise ratio compared with the nonintensified CCD system.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Castle, K. Talabardon, B. W. Smith, J. D. Winefordner, “Variables influencing the precision of laser-induced breakdown spectroscopy measurements,” Appl. Spectrosc. 52, 649–657 (1998).
    [CrossRef]
  2. J. E. Carranza, D. W. Hahn, “Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 779–790 (2002).
    [CrossRef]
  3. F. Colao, R. Fantoni, V. Lazic, V. Spizzichino, “Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—application on multi-layered ceramics and copper based alloys,” Spectrochim. Acta Part B 57, 1219–1234 (2002).
    [CrossRef]
  4. A. R. Rai, F. Y. Yueh, J. P. Singh, H. Zhang, “High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents,” Rev. Sci. Instrum. 73, 3589–3599 (2002).
    [CrossRef]
  5. C. Aragón, V. Madurga, J. A. Aguilera, “Application of laser-induced breakdown spectroscopy to the analysis of the composition of thin films produced by pulsed laser desorption,” Appl. Surface Sci. 197-198, 217–223 (2002).
    [CrossRef]
  6. J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
    [CrossRef]
  7. I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. W. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5184 (1999).
    [CrossRef]
  8. G. Galbács, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
    [CrossRef]
  9. S. I. Gornushkin, I. B. Gornushkin, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Effective normalization technique for the correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples,” Appl. Spectrosc. 56, 433–436 (2002).
    [CrossRef]
  10. T. M. Moskal, D. W. Hahn, “On-line sorting of wood treated with chromated copper arsenate using laser induced breakdown spectroscopy,” Appl. Spectrosc. 56, 1337–1344 (2002).
    [CrossRef]
  11. M. Sabsabi, R. Heon, V. Detalle, L. St-Onge, A. Hamel, “Comparison between intensified CCD and non-intensified gated CCD detectors for LIPS analysis of solid samples,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–130.
  12. D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
    [CrossRef]
  13. B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
    [CrossRef]

2002

J. E. Carranza, D. W. Hahn, “Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 779–790 (2002).
[CrossRef]

F. Colao, R. Fantoni, V. Lazic, V. Spizzichino, “Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—application on multi-layered ceramics and copper based alloys,” Spectrochim. Acta Part B 57, 1219–1234 (2002).
[CrossRef]

A. R. Rai, F. Y. Yueh, J. P. Singh, H. Zhang, “High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents,” Rev. Sci. Instrum. 73, 3589–3599 (2002).
[CrossRef]

C. Aragón, V. Madurga, J. A. Aguilera, “Application of laser-induced breakdown spectroscopy to the analysis of the composition of thin films produced by pulsed laser desorption,” Appl. Surface Sci. 197-198, 217–223 (2002).
[CrossRef]

S. I. Gornushkin, I. B. Gornushkin, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Effective normalization technique for the correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples,” Appl. Spectrosc. 56, 433–436 (2002).
[CrossRef]

T. M. Moskal, D. W. Hahn, “On-line sorting of wood treated with chromated copper arsenate using laser induced breakdown spectroscopy,” Appl. Spectrosc. 56, 1337–1344 (2002).
[CrossRef]

2001

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
[CrossRef]

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

G. Galbács, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
[CrossRef]

1999

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. W. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5184 (1999).
[CrossRef]

1998

Aguilera, J. A.

C. Aragón, V. Madurga, J. A. Aguilera, “Application of laser-induced breakdown spectroscopy to the analysis of the composition of thin films produced by pulsed laser desorption,” Appl. Surface Sci. 197-198, 217–223 (2002).
[CrossRef]

Anzano, J. M.

Aragón, C.

C. Aragón, V. Madurga, J. A. Aguilera, “Application of laser-induced breakdown spectroscopy to the analysis of the composition of thin films produced by pulsed laser desorption,” Appl. Surface Sci. 197-198, 217–223 (2002).
[CrossRef]

Arsenault, G. R.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Buckley, S. G.

Carranza, J. E.

J. E. Carranza, D. W. Hahn, “Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 779–790 (2002).
[CrossRef]

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Castle, B. C.

Colao, F.

F. Colao, R. Fantoni, V. Lazic, V. Spizzichino, “Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—application on multi-layered ceramics and copper based alloys,” Spectrochim. Acta Part B 57, 1219–1234 (2002).
[CrossRef]

Detalle, V.

M. Sabsabi, R. Heon, V. Detalle, L. St-Onge, A. Hamel, “Comparison between intensified CCD and non-intensified gated CCD detectors for LIPS analysis of solid samples,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–130.

Fantoni, R.

F. Colao, R. Fantoni, V. Lazic, V. Spizzichino, “Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—application on multi-layered ceramics and copper based alloys,” Spectrochim. Acta Part B 57, 1219–1234 (2002).
[CrossRef]

Fisher, B. T.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
[CrossRef]

Galbács, G.

G. Galbács, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
[CrossRef]

Gornushkin, I. B.

S. I. Gornushkin, I. B. Gornushkin, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Effective normalization technique for the correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples,” Appl. Spectrosc. 56, 433–436 (2002).
[CrossRef]

G. Galbács, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
[CrossRef]

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. W. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5184 (1999).
[CrossRef]

Gornushkin, S. I.

Hahn, D. W.

J. E. Carranza, D. W. Hahn, “Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 779–790 (2002).
[CrossRef]

T. M. Moskal, D. W. Hahn, “On-line sorting of wood treated with chromated copper arsenate using laser induced breakdown spectroscopy,” Appl. Spectrosc. 56, 1337–1344 (2002).
[CrossRef]

B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
[CrossRef]

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Hamel, A.

M. Sabsabi, R. Heon, V. Detalle, L. St-Onge, A. Hamel, “Comparison between intensified CCD and non-intensified gated CCD detectors for LIPS analysis of solid samples,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–130.

Hencken, K. R.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Heon, R.

M. Sabsabi, R. Heon, V. Detalle, L. St-Onge, A. Hamel, “Comparison between intensified CCD and non-intensified gated CCD detectors for LIPS analysis of solid samples,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–130.

Johnsen, H. A.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
[CrossRef]

Lazic, V.

F. Colao, R. Fantoni, V. Lazic, V. Spizzichino, “Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—application on multi-layered ceramics and copper based alloys,” Spectrochim. Acta Part B 57, 1219–1234 (2002).
[CrossRef]

Madurga, V.

C. Aragón, V. Madurga, J. A. Aguilera, “Application of laser-induced breakdown spectroscopy to the analysis of the composition of thin films produced by pulsed laser desorption,” Appl. Surface Sci. 197-198, 217–223 (2002).
[CrossRef]

Moskal, T. M.

Nasajpour, H.

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. W. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5184 (1999).
[CrossRef]

Rai, A. R.

A. R. Rai, F. Y. Yueh, J. P. Singh, H. Zhang, “High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents,” Rev. Sci. Instrum. 73, 3589–3599 (2002).
[CrossRef]

Sabsabi, M.

M. Sabsabi, R. Heon, V. Detalle, L. St-Onge, A. Hamel, “Comparison between intensified CCD and non-intensified gated CCD detectors for LIPS analysis of solid samples,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–130.

Singh, J. P.

A. R. Rai, F. Y. Yueh, J. P. Singh, H. Zhang, “High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents,” Rev. Sci. Instrum. 73, 3589–3599 (2002).
[CrossRef]

Smith, B. W.

S. I. Gornushkin, I. B. Gornushkin, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Effective normalization technique for the correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples,” Appl. Spectrosc. 56, 433–436 (2002).
[CrossRef]

G. Galbács, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
[CrossRef]

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. W. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5184 (1999).
[CrossRef]

B. C. Castle, K. Talabardon, B. W. Smith, J. D. Winefordner, “Variables influencing the precision of laser-induced breakdown spectroscopy measurements,” Appl. Spectrosc. 52, 649–657 (1998).
[CrossRef]

Spizzichino, V.

F. Colao, R. Fantoni, V. Lazic, V. Spizzichino, “Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—application on multi-layered ceramics and copper based alloys,” Spectrochim. Acta Part B 57, 1219–1234 (2002).
[CrossRef]

St-Onge, L.

M. Sabsabi, R. Heon, V. Detalle, L. St-Onge, A. Hamel, “Comparison between intensified CCD and non-intensified gated CCD detectors for LIPS analysis of solid samples,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–130.

Talabardon, K.

Winefordner, J. D.

Winefordner, J. W.

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. W. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5184 (1999).
[CrossRef]

Yoder, G. D.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Yueh, F. Y.

A. R. Rai, F. Y. Yueh, J. P. Singh, H. Zhang, “High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents,” Rev. Sci. Instrum. 73, 3589–3599 (2002).
[CrossRef]

Zhang, H.

A. R. Rai, F. Y. Yueh, J. P. Singh, H. Zhang, “High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents,” Rev. Sci. Instrum. 73, 3589–3599 (2002).
[CrossRef]

Anal. Chem.

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. W. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5184 (1999).
[CrossRef]

Appl. Spectrosc.

Appl. Surface Sci.

C. Aragón, V. Madurga, J. A. Aguilera, “Application of laser-induced breakdown spectroscopy to the analysis of the composition of thin films produced by pulsed laser desorption,” Appl. Surface Sci. 197-198, 217–223 (2002).
[CrossRef]

Rev. Sci. Instrum.

A. R. Rai, F. Y. Yueh, J. P. Singh, H. Zhang, “High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents,” Rev. Sci. Instrum. 73, 3589–3599 (2002).
[CrossRef]

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Spectrochim. Acta Part B

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

J. E. Carranza, D. W. Hahn, “Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 779–790 (2002).
[CrossRef]

F. Colao, R. Fantoni, V. Lazic, V. Spizzichino, “Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—application on multi-layered ceramics and copper based alloys,” Spectrochim. Acta Part B 57, 1219–1234 (2002).
[CrossRef]

G. Galbács, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001).
[CrossRef]

Other

M. Sabsabi, R. Heon, V. Detalle, L. St-Onge, A. Hamel, “Comparison between intensified CCD and non-intensified gated CCD detectors for LIPS analysis of solid samples,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 128–130.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

LIBS spectra corresponding to an ensemble average of 200 laser shots recorded with an ICCD and with a CCD system at a delay time of 5 µs. The ICCD spectrum has been shifted by 2 nm for clarity.

Fig. 2
Fig. 2

LIBS spectra corresponding to an ensemble average of 200 laser shots recorded with an ICCD and with a CCD system at a delay time of 20 µs. The ICCD spectrum has been shifted by 2 nm for clarity.

Fig. 3
Fig. 3

Single-shot LIBS spectra recorded with an ICCD and with a CCD system at a delay time of 5 µs. The ICCD spectrum has been shifted by 2 nm for clarity.

Fig. 4
Fig. 4

Single-shot LIBS spectra recorded with an ICCD and with a CCD system at a delay time of 20 µs. The ICCD spectrum has been shifted by 2 nm for clarity.

Fig. 5
Fig. 5

SNR of the 393.37-nm Ca ii emission line as a function of delay time for the ICCD and the CCD systems, obtained from both ensemble-averaged and single-shot spectral analyses.

Fig. 6
Fig. 6

Ensemble-averaged plasma continuum emission recorded with the ICCD and the CCD systems for delay times of 3 and 5 µs.

Tables (1)

Tables Icon

Table 1 System Specifications

Metrics