Abstract

Novel implementations of single-fiber laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy systems that gated light switches based on frustrated total internal reflection are described. The switching devices are largely wavelength independent, with full temporal and spatial separation of laser and fluorescence light. Wavelength-independent beam separation or beam combination schemes can be implemented for coaxial optical setups, e.g., in single-fiber or telescopic experimental arrangements. Selected practical examples of schemes for qualitative and quantitative analytical spectroscopy are discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Fefelov, A. V. Kharkovsky, S. I. Khomenko, “High contrast optical switch-attenuator,” in Topical Meeting on Photonic Switching, A. M. Goncharenko, F. V. Karpushko, G. V. Sinitsyn, S. P. Apanasevich, eds., Proc. SPIE1807, 254–258 (1992).
    [CrossRef]
  2. F. Könz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A. V. Kharkovsky, S. I. Khomenko, “Active and passive Q-switching of a 2.79 µm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
    [CrossRef]
  3. T. Oseki, S. Saito, “A precision variable, double prism attenuator for CO2 lasers,” Appl. Opt. 10, 144–149 (1971).
    [CrossRef] [PubMed]
  4. I. N. Court, F. K. Willisen, “Frustrated total internal reflection and applications of its principle to laser cavity design,” Appl. Spectrosc. 3, 719–729 (1964).
  5. A. V. Kharkovsky, H. H. Telle, “Remote analysis using laser spectroscopy,” presented at the International LIBS Workshop, Swansea, UK, 1 Mar 1995.
  6. I. M. Botheroyd, J. Young, A. I. Whitehouse; “Remote analysis of steels and other solid materials using laser-induced breakdown spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO/Europe), Vol. 6 of 1998 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1998), p. 198.
    [CrossRef]
  7. D. A. Cremers, J. E. Barefiled, A. C. Koskelo, “Remote element analysis by laser-induced breakdown spectroscopy using a fibre-optic cable,” Appl. Spectrosc. 49, 857–860 (1995).
    [CrossRef]
  8. D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
    [CrossRef]
  9. D. C. S. Beddows, “Addendum to “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 58, 583–584 (2003).
    [CrossRef]
  10. D. C. S. Beddows, “Industrial applications of remote and in situ laser-induced breakdown spectroscopy,” Ph.D. dissertation (University of Wales Swansea, Swansea, Wales, 2000).
  11. W. Sdorra, K. Niemax, “Basic investigations for laser micro analysis. II. Laser-induced fluorescence in laser-produced sample plumes,” Mikrochim. Acta 2, 201–218 (1989).
    [CrossRef]
  12. H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
    [CrossRef]

2003 (1)

D. C. S. Beddows, “Addendum to “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 58, 583–584 (2003).
[CrossRef]

2002 (1)

D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
[CrossRef]

2001 (1)

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
[CrossRef]

1995 (1)

1993 (1)

F. Könz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A. V. Kharkovsky, S. I. Khomenko, “Active and passive Q-switching of a 2.79 µm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[CrossRef]

1989 (1)

W. Sdorra, K. Niemax, “Basic investigations for laser micro analysis. II. Laser-induced fluorescence in laser-produced sample plumes,” Mikrochim. Acta 2, 201–218 (1989).
[CrossRef]

1971 (1)

1964 (1)

I. N. Court, F. K. Willisen, “Frustrated total internal reflection and applications of its principle to laser cavity design,” Appl. Spectrosc. 3, 719–729 (1964).

Barefiled, J. E.

Beddows, D. C. S.

D. C. S. Beddows, “Addendum to “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 58, 583–584 (2003).
[CrossRef]

D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
[CrossRef]

D. C. S. Beddows, “Industrial applications of remote and in situ laser-induced breakdown spectroscopy,” Ph.D. dissertation (University of Wales Swansea, Swansea, Wales, 2000).

Botheroyd, I. M.

I. M. Botheroyd, J. Young, A. I. Whitehouse; “Remote analysis of steels and other solid materials using laser-induced breakdown spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO/Europe), Vol. 6 of 1998 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1998), p. 198.
[CrossRef]

Court, I. N.

I. N. Court, F. K. Willisen, “Frustrated total internal reflection and applications of its principle to laser cavity design,” Appl. Spectrosc. 3, 719–729 (1964).

Cremers, D. A.

Fefelov, A. P.

A. P. Fefelov, A. V. Kharkovsky, S. I. Khomenko, “High contrast optical switch-attenuator,” in Topical Meeting on Photonic Switching, A. M. Goncharenko, F. V. Karpushko, G. V. Sinitsyn, S. P. Apanasevich, eds., Proc. SPIE1807, 254–258 (1992).
[CrossRef]

Forrer, M.

F. Könz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A. V. Kharkovsky, S. I. Khomenko, “Active and passive Q-switching of a 2.79 µm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[CrossRef]

Frenz, M.

F. Könz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A. V. Kharkovsky, S. I. Khomenko, “Active and passive Q-switching of a 2.79 µm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[CrossRef]

Kharkovsky, A. V.

F. Könz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A. V. Kharkovsky, S. I. Khomenko, “Active and passive Q-switching of a 2.79 µm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[CrossRef]

A. V. Kharkovsky, H. H. Telle, “Remote analysis using laser spectroscopy,” presented at the International LIBS Workshop, Swansea, UK, 1 Mar 1995.

A. P. Fefelov, A. V. Kharkovsky, S. I. Khomenko, “High contrast optical switch-attenuator,” in Topical Meeting on Photonic Switching, A. M. Goncharenko, F. V. Karpushko, G. V. Sinitsyn, S. P. Apanasevich, eds., Proc. SPIE1807, 254–258 (1992).
[CrossRef]

Khomenko, S. I.

F. Könz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A. V. Kharkovsky, S. I. Khomenko, “Active and passive Q-switching of a 2.79 µm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[CrossRef]

A. P. Fefelov, A. V. Kharkovsky, S. I. Khomenko, “High contrast optical switch-attenuator,” in Topical Meeting on Photonic Switching, A. M. Goncharenko, F. V. Karpushko, G. V. Sinitsyn, S. P. Apanasevich, eds., Proc. SPIE1807, 254–258 (1992).
[CrossRef]

Könz, F.

F. Könz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A. V. Kharkovsky, S. I. Khomenko, “Active and passive Q-switching of a 2.79 µm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[CrossRef]

Koskelo, A. C.

Liška, M.

D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
[CrossRef]

Morris, G. W.

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
[CrossRef]

Niemax, K.

W. Sdorra, K. Niemax, “Basic investigations for laser micro analysis. II. Laser-induced fluorescence in laser-produced sample plumes,” Mikrochim. Acta 2, 201–218 (1989).
[CrossRef]

Oseki, T.

Romano, V.

F. Könz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A. V. Kharkovsky, S. I. Khomenko, “Active and passive Q-switching of a 2.79 µm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[CrossRef]

Saito, S.

Samek, O.

D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
[CrossRef]

Sdorra, W.

W. Sdorra, K. Niemax, “Basic investigations for laser micro analysis. II. Laser-induced fluorescence in laser-produced sample plumes,” Mikrochim. Acta 2, 201–218 (1989).
[CrossRef]

Telle, H. H.

D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
[CrossRef]

A. V. Kharkovsky, H. H. Telle, “Remote analysis using laser spectroscopy,” presented at the International LIBS Workshop, Swansea, UK, 1 Mar 1995.

Weber, H. P.

F. Könz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A. V. Kharkovsky, S. I. Khomenko, “Active and passive Q-switching of a 2.79 µm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[CrossRef]

Whitehouse, A. I.

I. M. Botheroyd, J. Young, A. I. Whitehouse; “Remote analysis of steels and other solid materials using laser-induced breakdown spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO/Europe), Vol. 6 of 1998 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1998), p. 198.
[CrossRef]

Willisen, F. K.

I. N. Court, F. K. Willisen, “Frustrated total internal reflection and applications of its principle to laser cavity design,” Appl. Spectrosc. 3, 719–729 (1964).

Young, J.

I. M. Botheroyd, J. Young, A. I. Whitehouse; “Remote analysis of steels and other solid materials using laser-induced breakdown spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO/Europe), Vol. 6 of 1998 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1998), p. 198.
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (2)

I. N. Court, F. K. Willisen, “Frustrated total internal reflection and applications of its principle to laser cavity design,” Appl. Spectrosc. 3, 719–729 (1964).

D. A. Cremers, J. E. Barefiled, A. C. Koskelo, “Remote element analysis by laser-induced breakdown spectroscopy using a fibre-optic cable,” Appl. Spectrosc. 49, 857–860 (1995).
[CrossRef]

Mikrochim. Acta (1)

W. Sdorra, K. Niemax, “Basic investigations for laser micro analysis. II. Laser-induced fluorescence in laser-produced sample plumes,” Mikrochim. Acta 2, 201–218 (1989).
[CrossRef]

Opt. Commun. (1)

F. Könz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A. V. Kharkovsky, S. I. Khomenko, “Active and passive Q-switching of a 2.79 µm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[CrossRef]

Spectrochim. Acta B (3)

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
[CrossRef]

D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
[CrossRef]

D. C. S. Beddows, “Addendum to “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 58, 583–584 (2003).
[CrossRef]

Other (4)

D. C. S. Beddows, “Industrial applications of remote and in situ laser-induced breakdown spectroscopy,” Ph.D. dissertation (University of Wales Swansea, Swansea, Wales, 2000).

A. V. Kharkovsky, H. H. Telle, “Remote analysis using laser spectroscopy,” presented at the International LIBS Workshop, Swansea, UK, 1 Mar 1995.

I. M. Botheroyd, J. Young, A. I. Whitehouse; “Remote analysis of steels and other solid materials using laser-induced breakdown spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO/Europe), Vol. 6 of 1998 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1998), p. 198.
[CrossRef]

A. P. Fefelov, A. V. Kharkovsky, S. I. Khomenko, “High contrast optical switch-attenuator,” in Topical Meeting on Photonic Switching, A. M. Goncharenko, F. V. Karpushko, G. V. Sinitsyn, S. P. Apanasevich, eds., Proc. SPIE1807, 254–258 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The FTIR modulator device. (a) Schematic showing the principal effect on a light beam incident upon the active interface of the FTIR modulator when it is in its reflective (off) state, R, and its transmission (on) state, T; the FTIR configuration is shown for the application in beam separation. (b) Cross section of the active interface of the FTIR modulator, with the apparent laser-beam profile indicated; for dimensions see text. (c) The FTIR device used in these experiments. PZT, piezoelectric transducers.

Fig. 2
Fig. 2

Transmission properties of the FTIR modulator (BK7) for He-Ne laser radiation at λ = 632.8 nm. (a) Theoretical internal transmission according to Eq. (1). (b) Experimental external transmission; data points are corrected for external reflection losses to match the internal transmission model (representative error bars are included).

Fig. 3
Fig. 3

Experimental setup for characterization of the dynamics of the FTIR device: DVMs, digital voltmeter; TTL, transistor-transistor logic.

Fig. 4
Fig. 4

Relaxation oscillations of the FTIR switch after application of a HV pulse of +400 V to the biased (-100 V dc) piezo transducers. Oscillations with a period of ∼20 µs can be observed up to ∼1 ms after the FTIR stimulus. (a) First oscillation pulse with rise time, fall time, and width indicated; (b) extended oscillation range up to ∼1 ms. For further details see text.

Fig. 5
Fig. 5

Schematic of the experimental setup for coaxial LIBS: L, laser radiation; F, optical fiber cables; S, samples; SP, spectrometer. (a) Setup with beam separation by dichroic mirror; (b) set-up with a FTIR modulator.

Fig. 6
Fig. 6

Schematic diagram of the timing sequence of FTIR in LIBS. 1. The pulse from the ablation laser (τ = 0) is reflected off the active plane. 2. The FTIR remains in the reflective state as the laser pulse is delivered to the target and focused down to create a plasma plume. 3. After a delay to allow bremsstrahlung to decay, FTIR device is triggered into its transmission state and the emission collected from the plasma is passed through the FTIR modulator to a spectrometer for light-integration duration Δτ p (equivalent to the duration of the FTIR’s first transmission maximum). R, reflective (off) state; T, transmission (on) state.

Fig. 7
Fig. 7

LIBS spectra of a stainless-steel sample, for several time delays after plasma generation, recorded with the FTIR switch as the gating device triggered at delays of (a) 50 ns, (b) 500 ns, (c) 1000 ns, and (d) 5000 ns. The time during which the FTIR switch was open was Δτ p ∼ 3µs.

Fig. 8
Fig. 8

Experimental setup of LIBS + LIFS with a single-fiber coaxial arrangement that incorporates two FTIR devices. L1, Nd:YAG laser; L2, second harmonic of a Ti:sapphire laser; F, fiber optic cable; S, sample; SP, spectrometer.

Fig. 9
Fig. 9

LIBS + LIFS measurements of Cr (0.77%) in steel, measured with the FTIR modulator setup. (a) LIBS spectrum at 1-µs delay, (b) LIBS spectrum at 20-µs delay, (c) light scattered from Ti:sapphire laser at a 20-µs delay with the ablation laser radiation blocked, (d) LIBS + LIFS spectrum after a 20-µs delay. The light-observation gate width for all traces was Δτ p ∼ 3-µs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T=a×sinh22π dλn2 sin2 θ-11/2+1-1,
as=n2-124n2 cos2 θn2 sin2 θ-1 ap=as×n2+1sin2 θ-12.

Metrics