Abstract

Planar laser-induced fluorescence measurements were used to investigate the expansion dynamics of a femtosecond laser-induced plasma. Temporally and spatially resolved measurements were performed to monitor the atoms that were ablated from a silicon target. A dye laser (λ = 288.16 nm) was used to excite fluorescence signals. The radiation of an off-resonant transition (Si 390.55 nm) was observed at different distances from the target surface. This allowed easy detection of the ablated Si atoms without problems caused by scattered laser light. Abel inversion was applied to obtain the radial distribution of the Si atoms. The atom distribution in the plasma shows some peculiarities, depending on the crater depth.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Niemax, W. Sdorra, “Optical emission spectrometry and laser-induced fluorescence of laser produced sample plumes,” Appl. Opt. 29, 5000–5006 (1990).
    [CrossRef] [PubMed]
  2. H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
    [CrossRef]
  3. R. W. Dreyfus, “Cu0, Cu+ and Cu2 from excimer-ablated cooper,” J. Appl. Phys. 69, 1721–1729 (1991).
    [CrossRef]
  4. C. E. Otis, R. W. Dreyfus, “Laser ablation of YBa2Cu3O7—as probed by laser-induced fluorescence spectroscopy,” Phys. Rev. Lett. 67, 2102–2105 (1991).
    [CrossRef] [PubMed]
  5. G. Gal, S. Sgulim, T. Livneh, “Velocity angular distribution of ground level atomic silicon in the plume of laser ablated silica,” J. Appl. Phys. 89, 1927–1932 (2001).
    [CrossRef]
  6. Y. Matsuo, T. Nakajima, T. Kobayashi, M. Takami, “Formation and laser-induced-fluorescence study of SiO+ ions produced by laser ablation of Si in oxygen gas,” Appl. Phys. Lett. 71, 996–998 (1997).
    [CrossRef]
  7. A. Okano, K. Takayanagi, “Laser-induced fluorescence from collisionally excited Si atoms in laser ablation plume,” J. Appl. Phys. 86, 3964–3972 (1999).
    [CrossRef]
  8. J. B. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
    [CrossRef]
  9. B. J. Kirby, R. K. Hanson, “Linear excitation schemes for IR planar-induced fluorescence imaging of CO and CO2,” Appl. Opt. 41, 1190–1201 (2002).
    [CrossRef] [PubMed]
  10. V. Sick, “Exhaust-gas imaging via planar laser-induced fluorescence of sulfur dioxide,” Appl. Phys. B 74, 461–463 (2002).
    [CrossRef]
  11. Y. L. Chen, J. W. L. Lewis, “Visualization of laser-induced breakdown and ignition,” Opt. Express 9, 360–372 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  12. A. D. Sappey, T. K. Gamble, “Planar laser-induced fluorescence imaging of Cu atoms and Cu2 in a condensing laser-ablated cooper plasma plume,” J. Appl. Phys. 72, 5095–5107 (1992).
    [CrossRef]
  13. D. K. Zerkle, A. D. Sappey, “Time-resolved PLIF imaging of Cu in a laser-ablated copper plasma plume,” IEEE Trans. Plasma Sci. 24, 37–38 (1996).
    [CrossRef]
  14. Y. Nakata, H. Kaibara, T. Okada, M. Maeda, “Two-dimensional laser-induced imaging of a pulsed laser deposition process of YBa2Cu3O7,” J. Appl. Phys. 80, 2458–2466 (1996).
    [CrossRef]
  15. Ch. Dutouquet, J. Hermann, “Laser-induced fluorescence probing during pulsed-laser ablation for three-dimensional number density mapping of plasma species,” J. Phys. D 34, 3356–3363 (2001).
    [CrossRef]
  16. G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
    [CrossRef]
  17. T. P. Williamson, G. W. Martin, A. H. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “An investigation of neutral and ion number densities within laser-produced titanium plasmas in vacuum and ambient environments,” Appl. Phys. A 69, S859–S863 (1999).
    [CrossRef]
  18. M. Okoshi, K. Higashikawa, M. Hanabusa, “Pulsed laser deposition of ZnO thin films using a femtosecond laser,” Appl. Surf. Sci. 154–155, 424–427 (2000).
    [CrossRef]
  19. D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  20. A. V. Pakhomov, A. J. Roybal, M. S. Duran, “Ion dynamics of plasmas induced in elemental targets by femtosecond laser irradiation,” Appl. Spectrosc. 53, 979–986 (1999).
    [CrossRef]
  21. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
    [CrossRef]
  22. V. Margetic, T. Ban, F. Leis, K. Niemax, R. Hergenröder, “Hydrodynamic expansion of a femtosecond laser produced plasma,” Spectrochim. Acta Part B 58, 415–425 (2003).
    [CrossRef]
  23. Ch. M. Vest, Holographic Interferometry (Wiley, New York, 1979).
  24. F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of lines of Ni by emission of laser produced plasmas,” J. Phys. B 30, 893–903 (1997).
    [CrossRef]
  25. H. S. Kwong, R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix,” Anal. Chem. 51, 428–432 (1979).
    [CrossRef]
  26. R. K. Thareja, A. Misra, S. R. Franklin, “Investigation of laser ablated metal and polymer plasmas in ambient gas using fast photography,” Spectrochim. Acta Part B 53, 1919–1930 (1998).
    [CrossRef]
  27. E. M. Monge, C. Aragon, J. A. Aquilera, “Space-and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, 691–694 (1999).
    [CrossRef]

2003 (1)

V. Margetic, T. Ban, F. Leis, K. Niemax, R. Hergenröder, “Hydrodynamic expansion of a femtosecond laser produced plasma,” Spectrochim. Acta Part B 58, 415–425 (2003).
[CrossRef]

2002 (2)

B. J. Kirby, R. K. Hanson, “Linear excitation schemes for IR planar-induced fluorescence imaging of CO and CO2,” Appl. Opt. 41, 1190–1201 (2002).
[CrossRef] [PubMed]

V. Sick, “Exhaust-gas imaging via planar laser-induced fluorescence of sulfur dioxide,” Appl. Phys. B 74, 461–463 (2002).
[CrossRef]

2001 (5)

Y. L. Chen, J. W. L. Lewis, “Visualization of laser-induced breakdown and ignition,” Opt. Express 9, 360–372 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
[CrossRef]

G. Gal, S. Sgulim, T. Livneh, “Velocity angular distribution of ground level atomic silicon in the plume of laser ablated silica,” J. Appl. Phys. 89, 1927–1932 (2001).
[CrossRef]

Ch. Dutouquet, J. Hermann, “Laser-induced fluorescence probing during pulsed-laser ablation for three-dimensional number density mapping of plasma species,” J. Phys. D 34, 3356–3363 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

2000 (1)

M. Okoshi, K. Higashikawa, M. Hanabusa, “Pulsed laser deposition of ZnO thin films using a femtosecond laser,” Appl. Surf. Sci. 154–155, 424–427 (2000).
[CrossRef]

1999 (5)

A. V. Pakhomov, A. J. Roybal, M. S. Duran, “Ion dynamics of plasmas induced in elemental targets by femtosecond laser irradiation,” Appl. Spectrosc. 53, 979–986 (1999).
[CrossRef]

E. M. Monge, C. Aragon, J. A. Aquilera, “Space-and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, 691–694 (1999).
[CrossRef]

T. P. Williamson, G. W. Martin, A. H. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “An investigation of neutral and ion number densities within laser-produced titanium plasmas in vacuum and ambient environments,” Appl. Phys. A 69, S859–S863 (1999).
[CrossRef]

A. Okano, K. Takayanagi, “Laser-induced fluorescence from collisionally excited Si atoms in laser ablation plume,” J. Appl. Phys. 86, 3964–3972 (1999).
[CrossRef]

J. B. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
[CrossRef]

1998 (2)

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[CrossRef]

R. K. Thareja, A. Misra, S. R. Franklin, “Investigation of laser ablated metal and polymer plasmas in ambient gas using fast photography,” Spectrochim. Acta Part B 53, 1919–1930 (1998).
[CrossRef]

1997 (2)

F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of lines of Ni by emission of laser produced plasmas,” J. Phys. B 30, 893–903 (1997).
[CrossRef]

Y. Matsuo, T. Nakajima, T. Kobayashi, M. Takami, “Formation and laser-induced-fluorescence study of SiO+ ions produced by laser ablation of Si in oxygen gas,” Appl. Phys. Lett. 71, 996–998 (1997).
[CrossRef]

1996 (2)

D. K. Zerkle, A. D. Sappey, “Time-resolved PLIF imaging of Cu in a laser-ablated copper plasma plume,” IEEE Trans. Plasma Sci. 24, 37–38 (1996).
[CrossRef]

Y. Nakata, H. Kaibara, T. Okada, M. Maeda, “Two-dimensional laser-induced imaging of a pulsed laser deposition process of YBa2Cu3O7,” J. Appl. Phys. 80, 2458–2466 (1996).
[CrossRef]

1992 (1)

A. D. Sappey, T. K. Gamble, “Planar laser-induced fluorescence imaging of Cu atoms and Cu2 in a condensing laser-ablated cooper plasma plume,” J. Appl. Phys. 72, 5095–5107 (1992).
[CrossRef]

1991 (2)

R. W. Dreyfus, “Cu0, Cu+ and Cu2 from excimer-ablated cooper,” J. Appl. Phys. 69, 1721–1729 (1991).
[CrossRef]

C. E. Otis, R. W. Dreyfus, “Laser ablation of YBa2Cu3O7—as probed by laser-induced fluorescence spectroscopy,” Phys. Rev. Lett. 67, 2102–2105 (1991).
[CrossRef] [PubMed]

1990 (1)

1979 (1)

H. S. Kwong, R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix,” Anal. Chem. 51, 428–432 (1979).
[CrossRef]

Al-Khateeb, A.

T. P. Williamson, G. W. Martin, A. H. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “An investigation of neutral and ion number densities within laser-produced titanium plasmas in vacuum and ambient environments,” Appl. Phys. A 69, S859–S863 (1999).
[CrossRef]

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[CrossRef]

Angel, S. M.

Aquilera, J. A.

E. M. Monge, C. Aragon, J. A. Aquilera, “Space-and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, 691–694 (1999).
[CrossRef]

Aragon, C.

E. M. Monge, C. Aragon, J. A. Aquilera, “Space-and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, 691–694 (1999).
[CrossRef]

Ban, T.

V. Margetic, T. Ban, F. Leis, K. Niemax, R. Hergenröder, “Hydrodynamic expansion of a femtosecond laser produced plasma,” Spectrochim. Acta Part B 58, 415–425 (2003).
[CrossRef]

Bauerle, D.

D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, Berlin, 2000).
[CrossRef]

Beddows, D. C. S.

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
[CrossRef]

Campos, J.

F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of lines of Ni by emission of laser produced plasmas,” J. Phys. B 30, 893–903 (1997).
[CrossRef]

Chen, Y. L.

Doyle, L. A.

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[CrossRef]

Dreyfus, R. W.

R. W. Dreyfus, “Cu0, Cu+ and Cu2 from excimer-ablated cooper,” J. Appl. Phys. 69, 1721–1729 (1991).
[CrossRef]

C. E. Otis, R. W. Dreyfus, “Laser ablation of YBa2Cu3O7—as probed by laser-induced fluorescence spectroscopy,” Phys. Rev. Lett. 67, 2102–2105 (1991).
[CrossRef] [PubMed]

Duran, M. S.

Dutouquet, Ch.

Ch. Dutouquet, J. Hermann, “Laser-induced fluorescence probing during pulsed-laser ablation for three-dimensional number density mapping of plasma species,” J. Phys. D 34, 3356–3363 (2001).
[CrossRef]

Eland, K. L.

El-Astal, A. H.

T. P. Williamson, G. W. Martin, A. H. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “An investigation of neutral and ion number densities within laser-produced titanium plasmas in vacuum and ambient environments,” Appl. Phys. A 69, S859–S863 (1999).
[CrossRef]

Ferrero, F. S.

F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of lines of Ni by emission of laser produced plasmas,” J. Phys. B 30, 893–903 (1997).
[CrossRef]

Franklin, S. R.

R. K. Thareja, A. Misra, S. R. Franklin, “Investigation of laser ablated metal and polymer plasmas in ambient gas using fast photography,” Spectrochim. Acta Part B 53, 1919–1930 (1998).
[CrossRef]

Gal, G.

G. Gal, S. Sgulim, T. Livneh, “Velocity angular distribution of ground level atomic silicon in the plume of laser ablated silica,” J. Appl. Phys. 89, 1927–1932 (2001).
[CrossRef]

Gamble, T. K.

A. D. Sappey, T. K. Gamble, “Planar laser-induced fluorescence imaging of Cu atoms and Cu2 in a condensing laser-ablated cooper plasma plume,” J. Appl. Phys. 72, 5095–5107 (1992).
[CrossRef]

Gold, D. M.

Goode, S. R.

Hanabusa, M.

M. Okoshi, K. Higashikawa, M. Hanabusa, “Pulsed laser deposition of ZnO thin films using a femtosecond laser,” Appl. Surf. Sci. 154–155, 424–427 (2000).
[CrossRef]

Hanson, R. K.

B. J. Kirby, R. K. Hanson, “Linear excitation schemes for IR planar-induced fluorescence imaging of CO and CO2,” Appl. Opt. 41, 1190–1201 (2002).
[CrossRef] [PubMed]

J. B. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
[CrossRef]

Hergenröder, R.

V. Margetic, T. Ban, F. Leis, K. Niemax, R. Hergenröder, “Hydrodynamic expansion of a femtosecond laser produced plasma,” Spectrochim. Acta Part B 58, 415–425 (2003).
[CrossRef]

Hermann, J.

Ch. Dutouquet, J. Hermann, “Laser-induced fluorescence probing during pulsed-laser ablation for three-dimensional number density mapping of plasma species,” J. Phys. D 34, 3356–3363 (2001).
[CrossRef]

Higashikawa, K.

M. Okoshi, K. Higashikawa, M. Hanabusa, “Pulsed laser deposition of ZnO thin films using a femtosecond laser,” Appl. Surf. Sci. 154–155, 424–427 (2000).
[CrossRef]

Kaibara, H.

Y. Nakata, H. Kaibara, T. Okada, M. Maeda, “Two-dimensional laser-induced imaging of a pulsed laser deposition process of YBa2Cu3O7,” J. Appl. Phys. 80, 2458–2466 (1996).
[CrossRef]

Kirby, B. J.

Kirby, J. B.

J. B. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
[CrossRef]

Kobayashi, T.

Y. Matsuo, T. Nakajima, T. Kobayashi, M. Takami, “Formation and laser-induced-fluorescence study of SiO+ ions produced by laser ablation of Si in oxygen gas,” Appl. Phys. Lett. 71, 996–998 (1997).
[CrossRef]

Kwong, H. S.

H. S. Kwong, R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix,” Anal. Chem. 51, 428–432 (1979).
[CrossRef]

Lamb, M. J.

T. P. Williamson, G. W. Martin, A. H. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “An investigation of neutral and ion number densities within laser-produced titanium plasmas in vacuum and ambient environments,” Appl. Phys. A 69, S859–S863 (1999).
[CrossRef]

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[CrossRef]

Leis, F.

V. Margetic, T. Ban, F. Leis, K. Niemax, R. Hergenröder, “Hydrodynamic expansion of a femtosecond laser produced plasma,” Spectrochim. Acta Part B 58, 415–425 (2003).
[CrossRef]

Lewis, C. L. S.

T. P. Williamson, G. W. Martin, A. H. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “An investigation of neutral and ion number densities within laser-produced titanium plasmas in vacuum and ambient environments,” Appl. Phys. A 69, S859–S863 (1999).
[CrossRef]

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[CrossRef]

Lewis, J. W. L.

Livneh, T.

G. Gal, S. Sgulim, T. Livneh, “Velocity angular distribution of ground level atomic silicon in the plume of laser ablated silica,” J. Appl. Phys. 89, 1927–1932 (2001).
[CrossRef]

Maeda, M.

Y. Nakata, H. Kaibara, T. Okada, M. Maeda, “Two-dimensional laser-induced imaging of a pulsed laser deposition process of YBa2Cu3O7,” J. Appl. Phys. 80, 2458–2466 (1996).
[CrossRef]

Manrique, J.

F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of lines of Ni by emission of laser produced plasmas,” J. Phys. B 30, 893–903 (1997).
[CrossRef]

Margetic, V.

V. Margetic, T. Ban, F. Leis, K. Niemax, R. Hergenröder, “Hydrodynamic expansion of a femtosecond laser produced plasma,” Spectrochim. Acta Part B 58, 415–425 (2003).
[CrossRef]

Martin, G. W.

T. P. Williamson, G. W. Martin, A. H. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “An investigation of neutral and ion number densities within laser-produced titanium plasmas in vacuum and ambient environments,” Appl. Phys. A 69, S859–S863 (1999).
[CrossRef]

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[CrossRef]

Matsuo, Y.

Y. Matsuo, T. Nakajima, T. Kobayashi, M. Takami, “Formation and laser-induced-fluorescence study of SiO+ ions produced by laser ablation of Si in oxygen gas,” Appl. Phys. Lett. 71, 996–998 (1997).
[CrossRef]

Measures, R. M.

H. S. Kwong, R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix,” Anal. Chem. 51, 428–432 (1979).
[CrossRef]

Misra, A.

R. K. Thareja, A. Misra, S. R. Franklin, “Investigation of laser ablated metal and polymer plasmas in ambient gas using fast photography,” Spectrochim. Acta Part B 53, 1919–1930 (1998).
[CrossRef]

Monge, E. M.

E. M. Monge, C. Aragon, J. A. Aquilera, “Space-and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, 691–694 (1999).
[CrossRef]

Morris, G. W.

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
[CrossRef]

Morrow, T.

T. P. Williamson, G. W. Martin, A. H. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “An investigation of neutral and ion number densities within laser-produced titanium plasmas in vacuum and ambient environments,” Appl. Phys. A 69, S859–S863 (1999).
[CrossRef]

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[CrossRef]

Nakajima, T.

Y. Matsuo, T. Nakajima, T. Kobayashi, M. Takami, “Formation and laser-induced-fluorescence study of SiO+ ions produced by laser ablation of Si in oxygen gas,” Appl. Phys. Lett. 71, 996–998 (1997).
[CrossRef]

Nakata, Y.

Y. Nakata, H. Kaibara, T. Okada, M. Maeda, “Two-dimensional laser-induced imaging of a pulsed laser deposition process of YBa2Cu3O7,” J. Appl. Phys. 80, 2458–2466 (1996).
[CrossRef]

Niemax, K.

V. Margetic, T. Ban, F. Leis, K. Niemax, R. Hergenröder, “Hydrodynamic expansion of a femtosecond laser produced plasma,” Spectrochim. Acta Part B 58, 415–425 (2003).
[CrossRef]

K. Niemax, W. Sdorra, “Optical emission spectrometry and laser-induced fluorescence of laser produced sample plumes,” Appl. Opt. 29, 5000–5006 (1990).
[CrossRef] [PubMed]

Okada, T.

Y. Nakata, H. Kaibara, T. Okada, M. Maeda, “Two-dimensional laser-induced imaging of a pulsed laser deposition process of YBa2Cu3O7,” J. Appl. Phys. 80, 2458–2466 (1996).
[CrossRef]

Okano, A.

A. Okano, K. Takayanagi, “Laser-induced fluorescence from collisionally excited Si atoms in laser ablation plume,” J. Appl. Phys. 86, 3964–3972 (1999).
[CrossRef]

Okoshi, M.

M. Okoshi, K. Higashikawa, M. Hanabusa, “Pulsed laser deposition of ZnO thin films using a femtosecond laser,” Appl. Surf. Sci. 154–155, 424–427 (2000).
[CrossRef]

Otis, C. E.

C. E. Otis, R. W. Dreyfus, “Laser ablation of YBa2Cu3O7—as probed by laser-induced fluorescence spectroscopy,” Phys. Rev. Lett. 67, 2102–2105 (1991).
[CrossRef] [PubMed]

Pakhomov, A. V.

Riley, D.

T. P. Williamson, G. W. Martin, A. H. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “An investigation of neutral and ion number densities within laser-produced titanium plasmas in vacuum and ambient environments,” Appl. Phys. A 69, S859–S863 (1999).
[CrossRef]

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[CrossRef]

Roybal, A. J.

Samek, O.

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
[CrossRef]

Sappey, A. D.

D. K. Zerkle, A. D. Sappey, “Time-resolved PLIF imaging of Cu in a laser-ablated copper plasma plume,” IEEE Trans. Plasma Sci. 24, 37–38 (1996).
[CrossRef]

A. D. Sappey, T. K. Gamble, “Planar laser-induced fluorescence imaging of Cu atoms and Cu2 in a condensing laser-ablated cooper plasma plume,” J. Appl. Phys. 72, 5095–5107 (1992).
[CrossRef]

Sdorra, W.

Sgulim, S.

G. Gal, S. Sgulim, T. Livneh, “Velocity angular distribution of ground level atomic silicon in the plume of laser ablated silica,” J. Appl. Phys. 89, 1927–1932 (2001).
[CrossRef]

Sick, V.

V. Sick, “Exhaust-gas imaging via planar laser-induced fluorescence of sulfur dioxide,” Appl. Phys. B 74, 461–463 (2002).
[CrossRef]

Stratis, D. N.

Takami, M.

Y. Matsuo, T. Nakajima, T. Kobayashi, M. Takami, “Formation and laser-induced-fluorescence study of SiO+ ions produced by laser ablation of Si in oxygen gas,” Appl. Phys. Lett. 71, 996–998 (1997).
[CrossRef]

Takayanagi, K.

A. Okano, K. Takayanagi, “Laser-induced fluorescence from collisionally excited Si atoms in laser ablation plume,” J. Appl. Phys. 86, 3964–3972 (1999).
[CrossRef]

Telle, H. H.

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
[CrossRef]

Thareja, R. K.

R. K. Thareja, A. Misra, S. R. Franklin, “Investigation of laser ablated metal and polymer plasmas in ambient gas using fast photography,” Spectrochim. Acta Part B 53, 1919–1930 (1998).
[CrossRef]

Vest, Ch. M.

Ch. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

Weaver, I.

T. P. Williamson, G. W. Martin, A. H. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “An investigation of neutral and ion number densities within laser-produced titanium plasmas in vacuum and ambient environments,” Appl. Phys. A 69, S859–S863 (1999).
[CrossRef]

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[CrossRef]

Williamson, T. P.

T. P. Williamson, G. W. Martin, A. H. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “An investigation of neutral and ion number densities within laser-produced titanium plasmas in vacuum and ambient environments,” Appl. Phys. A 69, S859–S863 (1999).
[CrossRef]

Zerkle, D. K.

D. K. Zerkle, A. D. Sappey, “Time-resolved PLIF imaging of Cu in a laser-ablated copper plasma plume,” IEEE Trans. Plasma Sci. 24, 37–38 (1996).
[CrossRef]

Zwegers, M.

F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of lines of Ni by emission of laser produced plasmas,” J. Phys. B 30, 893–903 (1997).
[CrossRef]

Anal. Chem. (1)

H. S. Kwong, R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix,” Anal. Chem. 51, 428–432 (1979).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (2)

T. P. Williamson, G. W. Martin, A. H. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “An investigation of neutral and ion number densities within laser-produced titanium plasmas in vacuum and ambient environments,” Appl. Phys. A 69, S859–S863 (1999).
[CrossRef]

E. M. Monge, C. Aragon, J. A. Aquilera, “Space-and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, 691–694 (1999).
[CrossRef]

Appl. Phys. B (2)

V. Sick, “Exhaust-gas imaging via planar laser-induced fluorescence of sulfur dioxide,” Appl. Phys. B 74, 461–463 (2002).
[CrossRef]

J. B. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Matsuo, T. Nakajima, T. Kobayashi, M. Takami, “Formation and laser-induced-fluorescence study of SiO+ ions produced by laser ablation of Si in oxygen gas,” Appl. Phys. Lett. 71, 996–998 (1997).
[CrossRef]

Appl. Spectrosc. (2)

Appl. Surf. Sci. (2)

M. Okoshi, K. Higashikawa, M. Hanabusa, “Pulsed laser deposition of ZnO thin films using a femtosecond laser,” Appl. Surf. Sci. 154–155, 424–427 (2000).
[CrossRef]

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

D. K. Zerkle, A. D. Sappey, “Time-resolved PLIF imaging of Cu in a laser-ablated copper plasma plume,” IEEE Trans. Plasma Sci. 24, 37–38 (1996).
[CrossRef]

J. Appl. Phys. (5)

Y. Nakata, H. Kaibara, T. Okada, M. Maeda, “Two-dimensional laser-induced imaging of a pulsed laser deposition process of YBa2Cu3O7,” J. Appl. Phys. 80, 2458–2466 (1996).
[CrossRef]

A. D. Sappey, T. K. Gamble, “Planar laser-induced fluorescence imaging of Cu atoms and Cu2 in a condensing laser-ablated cooper plasma plume,” J. Appl. Phys. 72, 5095–5107 (1992).
[CrossRef]

A. Okano, K. Takayanagi, “Laser-induced fluorescence from collisionally excited Si atoms in laser ablation plume,” J. Appl. Phys. 86, 3964–3972 (1999).
[CrossRef]

G. Gal, S. Sgulim, T. Livneh, “Velocity angular distribution of ground level atomic silicon in the plume of laser ablated silica,” J. Appl. Phys. 89, 1927–1932 (2001).
[CrossRef]

R. W. Dreyfus, “Cu0, Cu+ and Cu2 from excimer-ablated cooper,” J. Appl. Phys. 69, 1721–1729 (1991).
[CrossRef]

J. Phys. B (1)

F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of lines of Ni by emission of laser produced plasmas,” J. Phys. B 30, 893–903 (1997).
[CrossRef]

J. Phys. D (1)

Ch. Dutouquet, J. Hermann, “Laser-induced fluorescence probing during pulsed-laser ablation for three-dimensional number density mapping of plasma species,” J. Phys. D 34, 3356–3363 (2001).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

C. E. Otis, R. W. Dreyfus, “Laser ablation of YBa2Cu3O7—as probed by laser-induced fluorescence spectroscopy,” Phys. Rev. Lett. 67, 2102–2105 (1991).
[CrossRef] [PubMed]

Spectrochim. Acta Part B (3)

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001).
[CrossRef]

R. K. Thareja, A. Misra, S. R. Franklin, “Investigation of laser ablated metal and polymer plasmas in ambient gas using fast photography,” Spectrochim. Acta Part B 53, 1919–1930 (1998).
[CrossRef]

V. Margetic, T. Ban, F. Leis, K. Niemax, R. Hergenröder, “Hydrodynamic expansion of a femtosecond laser produced plasma,” Spectrochim. Acta Part B 58, 415–425 (2003).
[CrossRef]

Other (2)

Ch. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, Berlin, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for LIF experiments. Inset shows detail of the plasma plume.

Fig. 2
Fig. 2

Plasma image obtained from the femtosecond laser ablation of Si with a CCD camera. Exposure time was 1 s.

Fig. 3
Fig. 3

Schematic representation of Si transitions used in our study, with the probe laser at 288 nm; off-resonance fluorescence transition was at 390 nm.

Fig. 4
Fig. 4

Radial distribution of Si atoms at different heights above the sample surface. The delay between the laser ablation and the probe beam was set to 1 µs. The pressure of the argon buffer gas was 140 mbar. The inset shows a schematic representation of the experiment. The LIF signal was registered perpendicular to the incoming probe beam laser pulse (see Fig. 1).

Fig. 5
Fig. 5

Radial distribution of Si atoms at different heights above the sample surface. The delay between the laser ablation and the probe beam was set to 1 µs. Buffer gas was air at atmospheric pressure.

Fig. 6
Fig. 6

Radial distribution of atoms at a fixed height above the sample (0.4 mm). The delay between the ablation and the probe laser was 0.5 µs. Argon pressure was 140 mbar.

Metrics