Abstract

The measured emission spectra of the OH radical subsequent to laser-induced optical breakdown in air are analyzed to infer spectroscopic temperature and species number density. Emissions from the UV A 2+X 2IIi transition dominate the spectra in the wavelength range of 306–322 nm and for time delays from the optical breakdown of 30–300 µs. Contributions from other species to the recorded OH emission spectra were also investigated for spectroscopic temperature measurements in the range of 2000–6000 K and for OH number densities in the range of 1014–2 × 1016 cm-3. Monte Carlo simulations are applied to estimate errors in the analysis of the hydroxyl spectra.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers, R. C. Wiens, M. J. Ferris, R. Brennetot, S. Maurice, “Capabilities of LIBS for analysis of geological samples at stand-off distances in a Mars atmosphere,” in Laser-Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 5–7
  2. C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite,” Appl. Opt. 42, 6192–6198 (2003).
    [CrossRef] [PubMed]
  3. C. Park, Nonequilibrium Air Radiation (NEQAIR) Program: User’s Manual, NASA TM 86707 (Ames Research Center, Moffet Field, Calif., 1985).
  4. C. O. Laoux, “Optical diagnostics and radiative emission of air plasmas,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1993).
  5. E. E. Whiting, C. Park, Y. Liu, J. O. Arnold, J. A. Paterson, NEQAIR96, Nonequilibrium and Equilibrium Transport and Spectra Program: User’s Manual, NASA RP-1389 (National Aeronautics and Space Administration, Reacting Flow Environments Branch, Ames Research Center, Moffet Field, Calif., 1996).
  6. S. Gordon, B. McBride, “Computer program for calculation of complex equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations,” NASA RP. SP-273 (NASA Lewis Research Center, Cleveland, Ohio, 1976).
  7. B. McBride, S. Gordon, “Chemical equilibrium program CEA,” NASA RP-1311, Part I, 1994; NASA RP-1311, Part II (NASA Lewis Research Center, Cleveland, Ohio, 1996).
  8. C. O. Laux, R. J. Gessman, C. H. Kruger, “Mechanisms of ionizational nonequilibrium in air and nitrogen plasmas,” Proceedings of AIAA 26th Plasmadynamics and Lasers Conference, (American Institute of Aeronautics and Astronautics, New York, 1995), AIAA paper 95-1989.
  9. G. Guan, “On the analysis of emission spectra and interference images,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 1998).
  10. J. W. L. Lewis, C. G. Parigger, J. O. Hornkohl, G. Guan, “Laser-induced optical breakdown plasma spectra and analysis by use of the program NEQAIR,” in Proceedings of AIAA 37th Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, New York, 1999), AIAA paper 99-0723, and references therein.
  11. C. G. Parigger, G. Guan, J. O. Hornkohl, “Laser-induced breakdown spectroscopy: analysis of OH spectra,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 102–103.
  12. J. O. Hornkohl, C. G. Parigger, “Boltzmann Equilibrium Spectrum Program (BESP),” http://view.utsi.edu/besp (2002).
  13. G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
    [CrossRef]
  14. J. A. Coxon, “Optimum molecular constants and term values for the X2II and A2∑+ states of OH,” Can. J. Phys. 58, 933–949 (1980).
    [CrossRef]
  15. J. A. Coxon, S. C. Foster, “Rotational analysis of hydroxyl vibration-rotation emission bands: molecular constants for OH X2II, 6 ≤ v ≤ 10,” Can. J. Phys. 60, 41–48 (1981).
    [CrossRef]
  16. J. A. Coxon, A. D. Sappey, R. A. Copeland, “Molecular constants and term values for the hydroxyl radical, OH: the X2II(v = 8,12), A2∑+(v = 4–9), B2∑+(v = 0,1), and C2∑+(v = 0,1) states,” J. Mol. Spectrosc. 145, 41–55 (1991).
    [CrossRef]
  17. J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
    [CrossRef]
  18. J. A. Silver, W. L. Dimpfl, J. H. Brophy, J. L. Kinsey, “Laser-induced fluorescence determination of internal-state distribution of OH Produced by H + NO2 in crossed molecular beams,” J. Chem. Phys. 65, 1811–1822 (1976).
    [CrossRef]
  19. R. K. Lengel, D. R. Crosley, “Energy transfer in A2∑+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
    [CrossRef]
  20. D. R. Crosley, G. P. Smith, “Vibrational energy transfer in laser-excited A2∑+ OH as a Flame thermometer,” Appl. Opt. 19, 517–520 (1980).
    [CrossRef] [PubMed]
  21. T. Nielsen, F. Bormann, M. Burrows, P. Andersen, “Picosecond laser-induced fluorescence measurement of rotational energy transfer of OH A2∑+(v′ = 2) in atmospheric pressure flames,” Appl. Opt. 36, 7960–7969 (1997).
    [CrossRef]
  22. C. G. Parigger, D. H. Plemmons, J. W. L. Lewis, G. Guan, Y. L. Chen, “Visualization of Laser-Induced Plasma” http://view.utsi.edu/cparigge/shadow/airimages.html (1996).
  23. D. A. Levin, C. O. Laux, C. H. Kruger, “A general model for the spectral calculation of OH radiation in the ultraviolet,” in Proceedings of 26th AIAA Plasmadynamics and Lasers Conference, AIAA paper 95-1990 (American Institute of Aeronautics and Astronautics, New York, 1995).

2003

1997

1991

J. A. Coxon, A. D. Sappey, R. A. Copeland, “Molecular constants and term values for the hydroxyl radical, OH: the X2II(v = 8,12), A2∑+(v = 4–9), B2∑+(v = 0,1), and C2∑+(v = 0,1) states,” J. Mol. Spectrosc. 145, 41–55 (1991).
[CrossRef]

1981

J. A. Coxon, S. C. Foster, “Rotational analysis of hydroxyl vibration-rotation emission bands: molecular constants for OH X2II, 6 ≤ v ≤ 10,” Can. J. Phys. 60, 41–48 (1981).
[CrossRef]

1980

J. A. Coxon, “Optimum molecular constants and term values for the X2II and A2∑+ states of OH,” Can. J. Phys. 58, 933–949 (1980).
[CrossRef]

D. R. Crosley, G. P. Smith, “Vibrational energy transfer in laser-excited A2∑+ OH as a Flame thermometer,” Appl. Opt. 19, 517–520 (1980).
[CrossRef] [PubMed]

1978

R. K. Lengel, D. R. Crosley, “Energy transfer in A2∑+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
[CrossRef]

1976

J. A. Silver, W. L. Dimpfl, J. H. Brophy, J. L. Kinsey, “Laser-induced fluorescence determination of internal-state distribution of OH Produced by H + NO2 in crossed molecular beams,” J. Chem. Phys. 65, 1811–1822 (1976).
[CrossRef]

1965

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

1962

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Andersen, P.

Arnold, J. O.

E. E. Whiting, C. Park, Y. Liu, J. O. Arnold, J. A. Paterson, NEQAIR96, Nonequilibrium and Equilibrium Transport and Spectra Program: User’s Manual, NASA RP-1389 (National Aeronautics and Space Administration, Reacting Flow Environments Branch, Ames Research Center, Moffet Field, Calif., 1996).

Bormann, F.

Brennetot, R.

D. A. Cremers, R. C. Wiens, M. J. Ferris, R. Brennetot, S. Maurice, “Capabilities of LIBS for analysis of geological samples at stand-off distances in a Mars atmosphere,” in Laser-Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 5–7

Brophy, J. H.

J. A. Silver, W. L. Dimpfl, J. H. Brophy, J. L. Kinsey, “Laser-induced fluorescence determination of internal-state distribution of OH Produced by H + NO2 in crossed molecular beams,” J. Chem. Phys. 65, 1811–1822 (1976).
[CrossRef]

Burrows, M.

Copeland, R. A.

J. A. Coxon, A. D. Sappey, R. A. Copeland, “Molecular constants and term values for the hydroxyl radical, OH: the X2II(v = 8,12), A2∑+(v = 4–9), B2∑+(v = 0,1), and C2∑+(v = 0,1) states,” J. Mol. Spectrosc. 145, 41–55 (1991).
[CrossRef]

Coxon, J. A.

J. A. Coxon, A. D. Sappey, R. A. Copeland, “Molecular constants and term values for the hydroxyl radical, OH: the X2II(v = 8,12), A2∑+(v = 4–9), B2∑+(v = 0,1), and C2∑+(v = 0,1) states,” J. Mol. Spectrosc. 145, 41–55 (1991).
[CrossRef]

J. A. Coxon, S. C. Foster, “Rotational analysis of hydroxyl vibration-rotation emission bands: molecular constants for OH X2II, 6 ≤ v ≤ 10,” Can. J. Phys. 60, 41–48 (1981).
[CrossRef]

J. A. Coxon, “Optimum molecular constants and term values for the X2II and A2∑+ states of OH,” Can. J. Phys. 58, 933–949 (1980).
[CrossRef]

Cremers, D. A.

D. A. Cremers, R. C. Wiens, M. J. Ferris, R. Brennetot, S. Maurice, “Capabilities of LIBS for analysis of geological samples at stand-off distances in a Mars atmosphere,” in Laser-Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 5–7

Crosley, D. R.

D. R. Crosley, G. P. Smith, “Vibrational energy transfer in laser-excited A2∑+ OH as a Flame thermometer,” Appl. Opt. 19, 517–520 (1980).
[CrossRef] [PubMed]

R. K. Lengel, D. R. Crosley, “Energy transfer in A2∑+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
[CrossRef]

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Dimpfl, W. L.

J. A. Silver, W. L. Dimpfl, J. H. Brophy, J. L. Kinsey, “Laser-induced fluorescence determination of internal-state distribution of OH Produced by H + NO2 in crossed molecular beams,” J. Chem. Phys. 65, 1811–1822 (1976).
[CrossRef]

Ferris, M. J.

D. A. Cremers, R. C. Wiens, M. J. Ferris, R. Brennetot, S. Maurice, “Capabilities of LIBS for analysis of geological samples at stand-off distances in a Mars atmosphere,” in Laser-Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 5–7

Foster, S. C.

J. A. Coxon, S. C. Foster, “Rotational analysis of hydroxyl vibration-rotation emission bands: molecular constants for OH X2II, 6 ≤ v ≤ 10,” Can. J. Phys. 60, 41–48 (1981).
[CrossRef]

Gessman, R. J.

C. O. Laux, R. J. Gessman, C. H. Kruger, “Mechanisms of ionizational nonequilibrium in air and nitrogen plasmas,” Proceedings of AIAA 26th Plasmadynamics and Lasers Conference, (American Institute of Aeronautics and Astronautics, New York, 1995), AIAA paper 95-1989.

Gordon, S.

B. McBride, S. Gordon, “Chemical equilibrium program CEA,” NASA RP-1311, Part I, 1994; NASA RP-1311, Part II (NASA Lewis Research Center, Cleveland, Ohio, 1996).

S. Gordon, B. McBride, “Computer program for calculation of complex equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations,” NASA RP. SP-273 (NASA Lewis Research Center, Cleveland, Ohio, 1976).

Guan, G.

J. W. L. Lewis, C. G. Parigger, J. O. Hornkohl, G. Guan, “Laser-induced optical breakdown plasma spectra and analysis by use of the program NEQAIR,” in Proceedings of AIAA 37th Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, New York, 1999), AIAA paper 99-0723, and references therein.

C. G. Parigger, G. Guan, J. O. Hornkohl, “Laser-induced breakdown spectroscopy: analysis of OH spectra,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 102–103.

G. Guan, “On the analysis of emission spectra and interference images,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 1998).

Hornkohl, J. O.

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite,” Appl. Opt. 42, 6192–6198 (2003).
[CrossRef] [PubMed]

C. G. Parigger, G. Guan, J. O. Hornkohl, “Laser-induced breakdown spectroscopy: analysis of OH spectra,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 102–103.

J. W. L. Lewis, C. G. Parigger, J. O. Hornkohl, G. Guan, “Laser-induced optical breakdown plasma spectra and analysis by use of the program NEQAIR,” in Proceedings of AIAA 37th Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, New York, 1999), AIAA paper 99-0723, and references therein.

Keszler, A. M.

Kinsey, J. L.

J. A. Silver, W. L. Dimpfl, J. H. Brophy, J. L. Kinsey, “Laser-induced fluorescence determination of internal-state distribution of OH Produced by H + NO2 in crossed molecular beams,” J. Chem. Phys. 65, 1811–1822 (1976).
[CrossRef]

Kruger, C. H.

C. O. Laux, R. J. Gessman, C. H. Kruger, “Mechanisms of ionizational nonequilibrium in air and nitrogen plasmas,” Proceedings of AIAA 26th Plasmadynamics and Lasers Conference, (American Institute of Aeronautics and Astronautics, New York, 1995), AIAA paper 95-1989.

D. A. Levin, C. O. Laux, C. H. Kruger, “A general model for the spectral calculation of OH radiation in the ultraviolet,” in Proceedings of 26th AIAA Plasmadynamics and Lasers Conference, AIAA paper 95-1990 (American Institute of Aeronautics and Astronautics, New York, 1995).

Laoux, C. O.

C. O. Laoux, “Optical diagnostics and radiative emission of air plasmas,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1993).

Laux, C. O.

D. A. Levin, C. O. Laux, C. H. Kruger, “A general model for the spectral calculation of OH radiation in the ultraviolet,” in Proceedings of 26th AIAA Plasmadynamics and Lasers Conference, AIAA paper 95-1990 (American Institute of Aeronautics and Astronautics, New York, 1995).

C. O. Laux, R. J. Gessman, C. H. Kruger, “Mechanisms of ionizational nonequilibrium in air and nitrogen plasmas,” Proceedings of AIAA 26th Plasmadynamics and Lasers Conference, (American Institute of Aeronautics and Astronautics, New York, 1995), AIAA paper 95-1989.

Lengel, R. K.

R. K. Lengel, D. R. Crosley, “Energy transfer in A2∑+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
[CrossRef]

Levin, D. A.

D. A. Levin, C. O. Laux, C. H. Kruger, “A general model for the spectral calculation of OH radiation in the ultraviolet,” in Proceedings of 26th AIAA Plasmadynamics and Lasers Conference, AIAA paper 95-1990 (American Institute of Aeronautics and Astronautics, New York, 1995).

Lewis, J. W. L.

J. W. L. Lewis, C. G. Parigger, J. O. Hornkohl, G. Guan, “Laser-induced optical breakdown plasma spectra and analysis by use of the program NEQAIR,” in Proceedings of AIAA 37th Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, New York, 1999), AIAA paper 99-0723, and references therein.

Liu, Y.

E. E. Whiting, C. Park, Y. Liu, J. O. Arnold, J. A. Paterson, NEQAIR96, Nonequilibrium and Equilibrium Transport and Spectra Program: User’s Manual, NASA RP-1389 (National Aeronautics and Space Administration, Reacting Flow Environments Branch, Ames Research Center, Moffet Field, Calif., 1996).

Maurice, S.

D. A. Cremers, R. C. Wiens, M. J. Ferris, R. Brennetot, S. Maurice, “Capabilities of LIBS for analysis of geological samples at stand-off distances in a Mars atmosphere,” in Laser-Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 5–7

McBride, B.

S. Gordon, B. McBride, “Computer program for calculation of complex equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations,” NASA RP. SP-273 (NASA Lewis Research Center, Cleveland, Ohio, 1976).

B. McBride, S. Gordon, “Chemical equilibrium program CEA,” NASA RP-1311, Part I, 1994; NASA RP-1311, Part II (NASA Lewis Research Center, Cleveland, Ohio, 1996).

Mead, R.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

Nelder, J. A.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

Nemes, L.

Nielsen, T.

Parigger, C. G.

C. G. Parigger, J. O. Hornkohl, A. M. Keszler, L. Nemes, “Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite,” Appl. Opt. 42, 6192–6198 (2003).
[CrossRef] [PubMed]

C. G. Parigger, G. Guan, J. O. Hornkohl, “Laser-induced breakdown spectroscopy: analysis of OH spectra,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 102–103.

J. W. L. Lewis, C. G. Parigger, J. O. Hornkohl, G. Guan, “Laser-induced optical breakdown plasma spectra and analysis by use of the program NEQAIR,” in Proceedings of AIAA 37th Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, New York, 1999), AIAA paper 99-0723, and references therein.

Park, C.

C. Park, Nonequilibrium Air Radiation (NEQAIR) Program: User’s Manual, NASA TM 86707 (Ames Research Center, Moffet Field, Calif., 1985).

E. E. Whiting, C. Park, Y. Liu, J. O. Arnold, J. A. Paterson, NEQAIR96, Nonequilibrium and Equilibrium Transport and Spectra Program: User’s Manual, NASA RP-1389 (National Aeronautics and Space Administration, Reacting Flow Environments Branch, Ames Research Center, Moffet Field, Calif., 1996).

Paterson, J. A.

E. E. Whiting, C. Park, Y. Liu, J. O. Arnold, J. A. Paterson, NEQAIR96, Nonequilibrium and Equilibrium Transport and Spectra Program: User’s Manual, NASA RP-1389 (National Aeronautics and Space Administration, Reacting Flow Environments Branch, Ames Research Center, Moffet Field, Calif., 1996).

Sappey, A. D.

J. A. Coxon, A. D. Sappey, R. A. Copeland, “Molecular constants and term values for the hydroxyl radical, OH: the X2II(v = 8,12), A2∑+(v = 4–9), B2∑+(v = 0,1), and C2∑+(v = 0,1) states,” J. Mol. Spectrosc. 145, 41–55 (1991).
[CrossRef]

Silver, J. A.

J. A. Silver, W. L. Dimpfl, J. H. Brophy, J. L. Kinsey, “Laser-induced fluorescence determination of internal-state distribution of OH Produced by H + NO2 in crossed molecular beams,” J. Chem. Phys. 65, 1811–1822 (1976).
[CrossRef]

Smith, G. P.

Whiting, E. E.

E. E. Whiting, C. Park, Y. Liu, J. O. Arnold, J. A. Paterson, NEQAIR96, Nonequilibrium and Equilibrium Transport and Spectra Program: User’s Manual, NASA RP-1389 (National Aeronautics and Space Administration, Reacting Flow Environments Branch, Ames Research Center, Moffet Field, Calif., 1996).

Wiens, R. C.

D. A. Cremers, R. C. Wiens, M. J. Ferris, R. Brennetot, S. Maurice, “Capabilities of LIBS for analysis of geological samples at stand-off distances in a Mars atmosphere,” in Laser-Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 5–7

Appl. Opt.

Can. J. Phys.

J. A. Coxon, “Optimum molecular constants and term values for the X2II and A2∑+ states of OH,” Can. J. Phys. 58, 933–949 (1980).
[CrossRef]

J. A. Coxon, S. C. Foster, “Rotational analysis of hydroxyl vibration-rotation emission bands: molecular constants for OH X2II, 6 ≤ v ≤ 10,” Can. J. Phys. 60, 41–48 (1981).
[CrossRef]

Comput. J.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

J. Chem. Phys.

J. A. Silver, W. L. Dimpfl, J. H. Brophy, J. L. Kinsey, “Laser-induced fluorescence determination of internal-state distribution of OH Produced by H + NO2 in crossed molecular beams,” J. Chem. Phys. 65, 1811–1822 (1976).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Energy transfer in A2∑+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
[CrossRef]

J. Mol. Spectrosc.

J. A. Coxon, A. D. Sappey, R. A. Copeland, “Molecular constants and term values for the hydroxyl radical, OH: the X2II(v = 8,12), A2∑+(v = 4–9), B2∑+(v = 0,1), and C2∑+(v = 0,1) states,” J. Mol. Spectrosc. 145, 41–55 (1991).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Other

D. A. Cremers, R. C. Wiens, M. J. Ferris, R. Brennetot, S. Maurice, “Capabilities of LIBS for analysis of geological samples at stand-off distances in a Mars atmosphere,” in Laser-Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 5–7

C. G. Parigger, D. H. Plemmons, J. W. L. Lewis, G. Guan, Y. L. Chen, “Visualization of Laser-Induced Plasma” http://view.utsi.edu/cparigge/shadow/airimages.html (1996).

D. A. Levin, C. O. Laux, C. H. Kruger, “A general model for the spectral calculation of OH radiation in the ultraviolet,” in Proceedings of 26th AIAA Plasmadynamics and Lasers Conference, AIAA paper 95-1990 (American Institute of Aeronautics and Astronautics, New York, 1995).

C. Park, Nonequilibrium Air Radiation (NEQAIR) Program: User’s Manual, NASA TM 86707 (Ames Research Center, Moffet Field, Calif., 1985).

C. O. Laoux, “Optical diagnostics and radiative emission of air plasmas,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1993).

E. E. Whiting, C. Park, Y. Liu, J. O. Arnold, J. A. Paterson, NEQAIR96, Nonequilibrium and Equilibrium Transport and Spectra Program: User’s Manual, NASA RP-1389 (National Aeronautics and Space Administration, Reacting Flow Environments Branch, Ames Research Center, Moffet Field, Calif., 1996).

S. Gordon, B. McBride, “Computer program for calculation of complex equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations,” NASA RP. SP-273 (NASA Lewis Research Center, Cleveland, Ohio, 1976).

B. McBride, S. Gordon, “Chemical equilibrium program CEA,” NASA RP-1311, Part I, 1994; NASA RP-1311, Part II (NASA Lewis Research Center, Cleveland, Ohio, 1996).

C. O. Laux, R. J. Gessman, C. H. Kruger, “Mechanisms of ionizational nonequilibrium in air and nitrogen plasmas,” Proceedings of AIAA 26th Plasmadynamics and Lasers Conference, (American Institute of Aeronautics and Astronautics, New York, 1995), AIAA paper 95-1989.

G. Guan, “On the analysis of emission spectra and interference images,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 1998).

J. W. L. Lewis, C. G. Parigger, J. O. Hornkohl, G. Guan, “Laser-induced optical breakdown plasma spectra and analysis by use of the program NEQAIR,” in Proceedings of AIAA 37th Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, New York, 1999), AIAA paper 99-0723, and references therein.

C. G. Parigger, G. Guan, J. O. Hornkohl, “Laser-induced breakdown spectroscopy: analysis of OH spectra,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 102–103.

J. O. Hornkohl, C. G. Parigger, “Boltzmann Equilibrium Spectrum Program (BESP),” http://view.utsi.edu/besp (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Shadowgraph images for 300-mJ breakdown pulses. The back-light source was operated at a repetition rate of 80 Hz. The images show records of subsequent optical breakdown events in air.

Fig. 2
Fig. 2

Measured and with the NEQAIR program fitted emission spectrum at a time delay of 30 µs after a laser-induced optical breakdown in air: circles, measured; curve, fitted.

Fig. 3
Fig. 3

Measured and with the BESP program fitted emission spectrum at a time delay of 60 µs: circles, measured; curve, fitted.

Fig. 4
Fig. 4

Measured and with the BESP program fitted emission spectrum at a time delay of 100 µs: circles, measured; curve, fitted.

Fig. 5
Fig. 5

Spectroscopic temperature and its variance versus time delay from optical breakdown, induced by use of Coherent Infinity 40–100 Nd:YAG 1064-nm radiation of 3.5-ns pulse width, focused to a typical peak intensity in air of 1013 W/cm2: squares, triangles, spectroscopic temperatures obtained with BESP; circles, Monte Carlo simulations.

Fig. 6
Fig. 6

Mole fraction of the OH molecule as a function of temperature. The number densities are indicated on the right: solid circles, inferred temperature and OH number density at specified time delays.

Fig. 7
Fig. 7

Temperature distributions for error magnitudes of x = 0.1, 0.2, and 0.3 from an error analysis when Monte Carlo simulations of OH spectra are used, measured 80 µs after optical breakdown in the wavelength range of 305–322 nm.

Tables (1)

Tables Icon

Table 1 Equilibrium Atomic and Molecular Number Densities (cm-3) versus Temperature (103 K)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Stotal=SOH+Sbackground.
SOH=Kε Aελexp-ε/kBT,
SOH=K ε Aελexp-ε/kBTfTdT,
yj=yj+x * ymean * R,

Metrics