Abstract

Temperature and pressure profiles are computed by the use of a two-dimensional, axially symmetric, time-accurate computational fluid-dynamic model for nominal 10-ns optical breakdown laser pulses. The computational model includes a kinetics mechanism that implements plasma equilibrium kinetics in ionized regions and nonequilibrium, multistep, finite-rate reactions in nonionized regions. Fluid-physics phenomena following laser-induced breakdown are recorded with high-speed shadowgraph techniques. The predicted fluid phenomena are shown by direct comparison with experimental records to agree with the flow patterns that are characteristic of laser spark decay.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. G. Dors, “Laser spark ignition modeling,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 2000).
  2. Y. Chen, “Laser-induced gas breakdown and ignition,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 1998).
  3. D. H. Plemmons, “Laser-spark ignition and the NH radical,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 1996).
  4. Y.-L. Chen, University of Tennessee Space Institute, Tullahoma, Tenn. 37388 (personal communication, 1999).
  5. W. Qin, University of Tennessee Space Institute, Tullahoma, Tenn. 37388 (personal communication, 2000).
  6. Y. A. Chen, J. W. L. Lewis, “Visualization of laser-induced breakdown and ignition,” Opt. Express 9, 360–372 (2001), http://www.opticsexpress.org .
    [CrossRef]
  7. H. Yan, R. Adelgren, M. Boguszko, G. Elliott, D. Knight, “Laser energy deposition in quiescent air,” presented at AIAA 41st Aerospace Sciences Meeting and Exhibit, AIAA paper 2003-1051, Reno, Nev., 6–9 Jan. 2003.
  8. D. Knight, “Survey of aerodynamic flow control at high speed by energy deposition,” presented at 41st Aerospace Sciences Meeting and Exhibit, AIAA paper 2003-525, Reno, Nev., 6–9 Jan. 2003.
  9. V. Svetsov, M. Popova, V. Rybakov, V. Artemiev, S. Medveduk, “Jet and vortex flow induced by anisotropic blast wave: experimental and computational study,” Shock Waves 7, 325–334 (1997).
    [CrossRef]
  10. H. Steiner, W. Gretler, “The propagation of spherical and cylindrical shock waves in real gases,” Phys. Fluids 6, 2154–2164 (1994).
    [CrossRef]
  11. H. Steiner, W. Gretler, T. Hirschler, “Numerical solution for spherical laser-driven shock waves,” Shock Waves 8, 139–147 (1998).
    [CrossRef]
  12. Z. Jiang, K. Takayama, K. P. B. Moosad, O. Onodera, M. Sun, “Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing,” Shock Waves 8, 337–349 (1998).
    [CrossRef]
  13. G. Taylor, “The formation of a blast wave by a very intense explosion,” Proc. R. Soc. London Ser. A 201, 175–186 (1950).
    [CrossRef]
  14. L. I. Sedov, Similarity and Dimensional Methods in Mechanics, 2nd ed. (Academic, New York, 1959).
  15. Computational Fluid Dynamics Research Corporation, 215 Wynn Drive, Huntville, Ala. 35805.
  16. G. V. Sklizkov, “Lasers in high-speed photography,” in Laser Handbook, F. T. Arrechi, E. O. Schulz-DuBois, eds. (North-Holland, New York, 1972), Vol. 2, Part F3, pp. 1545–1576.
  17. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, New York, 2001).
    [CrossRef]
  18. C. G. Parigger, D. H. Plemmons, J. W. L. Lewis, G. Guan, Y. L. Chen, “Visualization of laser-induced plasma,” http://view.utsi.edu/cparigge/shadow/airimages.html .
  19. A. Thorne, U. Litzén, S. Johansson, Spectrophysics, Principles and Applications (Springer-Verlag, New York, 1999), Chap. 9, pp. 220–222.
  20. J. B. Simeonsson, A. W. Miziolek, “Time-resolved emission studies of ArF-laser-produced microplasmas,” Appl. Opt. 32, 939–947 (1993).
    [CrossRef] [PubMed]
  21. M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, A. N. Syverud, “JANAF thermochemical tables. Third edition,” J. Phys. Chem. Ref. Data 14, 1–186 (1985).
  22. C. E. Moore, Hydrogen through Vanadium, Vol. I of Atomic Energy Levels Circ. Nat. Bur. Stand. (V.S.) Circ.467 (1949).
  23. Computational Fluid Dynamics Research Corporation, CFD-ACE Theory Manual, 5th ed. (Computational Fluid Dynamics Research Corporation, Huntsville, Ala., 1998).
  24. B. McBride, S. Gordon, “Chemical equilibrium program CEA,” NASA report RP-1311 (National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio, 1996).
  25. D. C. Smith, “Laser induced gas breakdown and plasma interaction,” presented at AIAA 38th Aerospace Sciences Meeting and Exhibit, AIAA paper 2000-716, Reno, Nev., 10–13 Jan 2000.
  26. C. Parigger, Y. Tang, D. H. Plemmons, J. W. L. Lewis, “Spherical aberration effects in lens-axicon doublets: theoretical study” Appl. Opt. 36, 8214–8221 (1997).
    [CrossRef]
  27. G. M. Weyl, “Physics of laser-induced breakdown: an update,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds, 1st. ed. (Marcel Dekker, New York, 1989), pp. 1–67.
  28. R. G. Root, “Modeling of post-breakdown phenomena,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, A. Cremers, eds., 1st ed. (Marcel Dekker, New York, 1989), pp. 69–103.
  29. C. Grey Morgan, “Laser-produced plasmas,” in Radiative Processes in Discharge Plasmas, J. M. Proud, L. H. Luessen, eds. Vol. 149NATO Advanced Study Institute on Radiative Processes in Discharge Plasmas (Plenum, New York, 1985), pp. 457–507.
  30. C. Grey Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
    [CrossRef]
  31. Y.-L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 7, 91–103 (2000).
    [CrossRef]
  32. J. Stricker, J. G. Parker, “Experimental investigations of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064 µ,” J. Appl. Phys. 53, 851–855 (1982).
    [CrossRef]
  33. G. Baravian, J. Godart, G. Sultan, “Multiphoton ionization of molecular nitrogen by a neodymium-glass laser,” Phys. Rev. A 25, 1483–1495 (1982).
    [CrossRef]
  34. R. L. Taylor, G. Caledonia, “Experimental determination of the cross-sections for neutral bremsstrahlung,” J. Quant. Spectrosc. Radiat. Transfer 9, 681–696 (1969).
    [CrossRef]
  35. I. Dors, C. Parigger, J. W. L. Lewis, “Fluid dynamic effects following laser-induced optical breakdown,” 38th Aerospace Sciences Meeting and Exhibit, paper AIAA 2000-717, Reno, Nev., 10–13 Jan. 2000.
  36. M. I. Boulos, P. Fäuchais, Pfender, “Thermal Plasmas: Fundamentals and Applications, 1st ed. (Plenum, New York, New York, 1994), App. pp. 385–448.
  37. C. R. Wilke, “A viscosity equation for gas mixtures.” J. Chem. Phys. 18, 517–519 (1950).
    [CrossRef]
  38. E. Gutheil, G. Balakrishnan, F. A. Williams, “Structure and extinction of hydrogen-air diffusion flames,” in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters, B. Rogg, eds. (Springer-Verlag, New York, 1993), pp. 177–195.
    [CrossRef]
  39. P. J. VanDoormal, G. D. Raithby, “Enhancements of the simple method for predicting incompressible fluid flows,” Numer. Heat Transfer 7, 147–163 (1984).
  40. C. G. Parigger, I. G. Dors, “Laser-induced breakdown: pressure and temperature dynamics,” in Laser Induced Plasma Spectrosocopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics series (Optical Society of America, Washington, D.C., 2002), pp. 78–79.

2001 (1)

2000 (1)

Y.-L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 7, 91–103 (2000).
[CrossRef]

1998 (2)

H. Steiner, W. Gretler, T. Hirschler, “Numerical solution for spherical laser-driven shock waves,” Shock Waves 8, 139–147 (1998).
[CrossRef]

Z. Jiang, K. Takayama, K. P. B. Moosad, O. Onodera, M. Sun, “Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing,” Shock Waves 8, 337–349 (1998).
[CrossRef]

1997 (2)

V. Svetsov, M. Popova, V. Rybakov, V. Artemiev, S. Medveduk, “Jet and vortex flow induced by anisotropic blast wave: experimental and computational study,” Shock Waves 7, 325–334 (1997).
[CrossRef]

C. Parigger, Y. Tang, D. H. Plemmons, J. W. L. Lewis, “Spherical aberration effects in lens-axicon doublets: theoretical study” Appl. Opt. 36, 8214–8221 (1997).
[CrossRef]

1994 (1)

H. Steiner, W. Gretler, “The propagation of spherical and cylindrical shock waves in real gases,” Phys. Fluids 6, 2154–2164 (1994).
[CrossRef]

1993 (1)

1985 (1)

M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, A. N. Syverud, “JANAF thermochemical tables. Third edition,” J. Phys. Chem. Ref. Data 14, 1–186 (1985).

1984 (1)

P. J. VanDoormal, G. D. Raithby, “Enhancements of the simple method for predicting incompressible fluid flows,” Numer. Heat Transfer 7, 147–163 (1984).

1982 (2)

J. Stricker, J. G. Parker, “Experimental investigations of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064 µ,” J. Appl. Phys. 53, 851–855 (1982).
[CrossRef]

G. Baravian, J. Godart, G. Sultan, “Multiphoton ionization of molecular nitrogen by a neodymium-glass laser,” Phys. Rev. A 25, 1483–1495 (1982).
[CrossRef]

1975 (1)

C. Grey Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[CrossRef]

1969 (1)

R. L. Taylor, G. Caledonia, “Experimental determination of the cross-sections for neutral bremsstrahlung,” J. Quant. Spectrosc. Radiat. Transfer 9, 681–696 (1969).
[CrossRef]

1950 (2)

C. R. Wilke, “A viscosity equation for gas mixtures.” J. Chem. Phys. 18, 517–519 (1950).
[CrossRef]

G. Taylor, “The formation of a blast wave by a very intense explosion,” Proc. R. Soc. London Ser. A 201, 175–186 (1950).
[CrossRef]

Adelgren, R.

H. Yan, R. Adelgren, M. Boguszko, G. Elliott, D. Knight, “Laser energy deposition in quiescent air,” presented at AIAA 41st Aerospace Sciences Meeting and Exhibit, AIAA paper 2003-1051, Reno, Nev., 6–9 Jan. 2003.

Artemiev, V.

V. Svetsov, M. Popova, V. Rybakov, V. Artemiev, S. Medveduk, “Jet and vortex flow induced by anisotropic blast wave: experimental and computational study,” Shock Waves 7, 325–334 (1997).
[CrossRef]

Balakrishnan, G.

E. Gutheil, G. Balakrishnan, F. A. Williams, “Structure and extinction of hydrogen-air diffusion flames,” in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters, B. Rogg, eds. (Springer-Verlag, New York, 1993), pp. 177–195.
[CrossRef]

Baravian, G.

G. Baravian, J. Godart, G. Sultan, “Multiphoton ionization of molecular nitrogen by a neodymium-glass laser,” Phys. Rev. A 25, 1483–1495 (1982).
[CrossRef]

Boguszko, M.

H. Yan, R. Adelgren, M. Boguszko, G. Elliott, D. Knight, “Laser energy deposition in quiescent air,” presented at AIAA 41st Aerospace Sciences Meeting and Exhibit, AIAA paper 2003-1051, Reno, Nev., 6–9 Jan. 2003.

Boulos, M. I.

M. I. Boulos, P. Fäuchais, Pfender, “Thermal Plasmas: Fundamentals and Applications, 1st ed. (Plenum, New York, New York, 1994), App. pp. 385–448.

Caledonia, G.

R. L. Taylor, G. Caledonia, “Experimental determination of the cross-sections for neutral bremsstrahlung,” J. Quant. Spectrosc. Radiat. Transfer 9, 681–696 (1969).
[CrossRef]

Chase, M. W.

M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, A. N. Syverud, “JANAF thermochemical tables. Third edition,” J. Phys. Chem. Ref. Data 14, 1–186 (1985).

Chen, Y.

Y. Chen, “Laser-induced gas breakdown and ignition,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 1998).

Chen, Y. A.

Chen, Y.-L.

Y.-L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 7, 91–103 (2000).
[CrossRef]

Y.-L. Chen, University of Tennessee Space Institute, Tullahoma, Tenn. 37388 (personal communication, 1999).

Davies, C. A.

M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, A. N. Syverud, “JANAF thermochemical tables. Third edition,” J. Phys. Chem. Ref. Data 14, 1–186 (1985).

Dors, I.

I. Dors, C. Parigger, J. W. L. Lewis, “Fluid dynamic effects following laser-induced optical breakdown,” 38th Aerospace Sciences Meeting and Exhibit, paper AIAA 2000-717, Reno, Nev., 10–13 Jan. 2000.

Dors, I. G.

I. G. Dors, “Laser spark ignition modeling,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 2000).

C. G. Parigger, I. G. Dors, “Laser-induced breakdown: pressure and temperature dynamics,” in Laser Induced Plasma Spectrosocopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics series (Optical Society of America, Washington, D.C., 2002), pp. 78–79.

Downey, J. R.

M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, A. N. Syverud, “JANAF thermochemical tables. Third edition,” J. Phys. Chem. Ref. Data 14, 1–186 (1985).

Elliott, G.

H. Yan, R. Adelgren, M. Boguszko, G. Elliott, D. Knight, “Laser energy deposition in quiescent air,” presented at AIAA 41st Aerospace Sciences Meeting and Exhibit, AIAA paper 2003-1051, Reno, Nev., 6–9 Jan. 2003.

Fäuchais, P.

M. I. Boulos, P. Fäuchais, Pfender, “Thermal Plasmas: Fundamentals and Applications, 1st ed. (Plenum, New York, New York, 1994), App. pp. 385–448.

Frurip, D. J.

M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, A. N. Syverud, “JANAF thermochemical tables. Third edition,” J. Phys. Chem. Ref. Data 14, 1–186 (1985).

Godart, J.

G. Baravian, J. Godart, G. Sultan, “Multiphoton ionization of molecular nitrogen by a neodymium-glass laser,” Phys. Rev. A 25, 1483–1495 (1982).
[CrossRef]

Gordon, S.

B. McBride, S. Gordon, “Chemical equilibrium program CEA,” NASA report RP-1311 (National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio, 1996).

Gretler, W.

H. Steiner, W. Gretler, T. Hirschler, “Numerical solution for spherical laser-driven shock waves,” Shock Waves 8, 139–147 (1998).
[CrossRef]

H. Steiner, W. Gretler, “The propagation of spherical and cylindrical shock waves in real gases,” Phys. Fluids 6, 2154–2164 (1994).
[CrossRef]

Grey Morgan, C.

C. Grey Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[CrossRef]

C. Grey Morgan, “Laser-produced plasmas,” in Radiative Processes in Discharge Plasmas, J. M. Proud, L. H. Luessen, eds. Vol. 149NATO Advanced Study Institute on Radiative Processes in Discharge Plasmas (Plenum, New York, 1985), pp. 457–507.

Gutheil, E.

E. Gutheil, G. Balakrishnan, F. A. Williams, “Structure and extinction of hydrogen-air diffusion flames,” in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters, B. Rogg, eds. (Springer-Verlag, New York, 1993), pp. 177–195.
[CrossRef]

Hirschler, T.

H. Steiner, W. Gretler, T. Hirschler, “Numerical solution for spherical laser-driven shock waves,” Shock Waves 8, 139–147 (1998).
[CrossRef]

Jiang, Z.

Z. Jiang, K. Takayama, K. P. B. Moosad, O. Onodera, M. Sun, “Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing,” Shock Waves 8, 337–349 (1998).
[CrossRef]

Johansson, S.

A. Thorne, U. Litzén, S. Johansson, Spectrophysics, Principles and Applications (Springer-Verlag, New York, 1999), Chap. 9, pp. 220–222.

Knight, D.

D. Knight, “Survey of aerodynamic flow control at high speed by energy deposition,” presented at 41st Aerospace Sciences Meeting and Exhibit, AIAA paper 2003-525, Reno, Nev., 6–9 Jan. 2003.

H. Yan, R. Adelgren, M. Boguszko, G. Elliott, D. Knight, “Laser energy deposition in quiescent air,” presented at AIAA 41st Aerospace Sciences Meeting and Exhibit, AIAA paper 2003-1051, Reno, Nev., 6–9 Jan. 2003.

Lewis, J. W. L.

Y. A. Chen, J. W. L. Lewis, “Visualization of laser-induced breakdown and ignition,” Opt. Express 9, 360–372 (2001), http://www.opticsexpress.org .
[CrossRef]

Y.-L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 7, 91–103 (2000).
[CrossRef]

C. Parigger, Y. Tang, D. H. Plemmons, J. W. L. Lewis, “Spherical aberration effects in lens-axicon doublets: theoretical study” Appl. Opt. 36, 8214–8221 (1997).
[CrossRef]

I. Dors, C. Parigger, J. W. L. Lewis, “Fluid dynamic effects following laser-induced optical breakdown,” 38th Aerospace Sciences Meeting and Exhibit, paper AIAA 2000-717, Reno, Nev., 10–13 Jan. 2000.

Litzén, U.

A. Thorne, U. Litzén, S. Johansson, Spectrophysics, Principles and Applications (Springer-Verlag, New York, 1999), Chap. 9, pp. 220–222.

McBride, B.

B. McBride, S. Gordon, “Chemical equilibrium program CEA,” NASA report RP-1311 (National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio, 1996).

McDonald, R. A.

M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, A. N. Syverud, “JANAF thermochemical tables. Third edition,” J. Phys. Chem. Ref. Data 14, 1–186 (1985).

Medveduk, S.

V. Svetsov, M. Popova, V. Rybakov, V. Artemiev, S. Medveduk, “Jet and vortex flow induced by anisotropic blast wave: experimental and computational study,” Shock Waves 7, 325–334 (1997).
[CrossRef]

Miziolek, A. W.

Moore, C. E.

C. E. Moore, Hydrogen through Vanadium, Vol. I of Atomic Energy Levels Circ. Nat. Bur. Stand. (V.S.) Circ.467 (1949).

Moosad, K. P. B.

Z. Jiang, K. Takayama, K. P. B. Moosad, O. Onodera, M. Sun, “Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing,” Shock Waves 8, 337–349 (1998).
[CrossRef]

Onodera, O.

Z. Jiang, K. Takayama, K. P. B. Moosad, O. Onodera, M. Sun, “Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing,” Shock Waves 8, 337–349 (1998).
[CrossRef]

Parigger, C.

Y.-L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 7, 91–103 (2000).
[CrossRef]

C. Parigger, Y. Tang, D. H. Plemmons, J. W. L. Lewis, “Spherical aberration effects in lens-axicon doublets: theoretical study” Appl. Opt. 36, 8214–8221 (1997).
[CrossRef]

I. Dors, C. Parigger, J. W. L. Lewis, “Fluid dynamic effects following laser-induced optical breakdown,” 38th Aerospace Sciences Meeting and Exhibit, paper AIAA 2000-717, Reno, Nev., 10–13 Jan. 2000.

Parigger, C. G.

C. G. Parigger, I. G. Dors, “Laser-induced breakdown: pressure and temperature dynamics,” in Laser Induced Plasma Spectrosocopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics series (Optical Society of America, Washington, D.C., 2002), pp. 78–79.

Parker, J. G.

J. Stricker, J. G. Parker, “Experimental investigations of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064 µ,” J. Appl. Phys. 53, 851–855 (1982).
[CrossRef]

Pfender,

M. I. Boulos, P. Fäuchais, Pfender, “Thermal Plasmas: Fundamentals and Applications, 1st ed. (Plenum, New York, New York, 1994), App. pp. 385–448.

Plemmons, D. H.

C. Parigger, Y. Tang, D. H. Plemmons, J. W. L. Lewis, “Spherical aberration effects in lens-axicon doublets: theoretical study” Appl. Opt. 36, 8214–8221 (1997).
[CrossRef]

D. H. Plemmons, “Laser-spark ignition and the NH radical,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 1996).

Popova, M.

V. Svetsov, M. Popova, V. Rybakov, V. Artemiev, S. Medveduk, “Jet and vortex flow induced by anisotropic blast wave: experimental and computational study,” Shock Waves 7, 325–334 (1997).
[CrossRef]

Qin, W.

W. Qin, University of Tennessee Space Institute, Tullahoma, Tenn. 37388 (personal communication, 2000).

Raithby, G. D.

P. J. VanDoormal, G. D. Raithby, “Enhancements of the simple method for predicting incompressible fluid flows,” Numer. Heat Transfer 7, 147–163 (1984).

Root, R. G.

R. G. Root, “Modeling of post-breakdown phenomena,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, A. Cremers, eds., 1st ed. (Marcel Dekker, New York, 1989), pp. 69–103.

Rybakov, V.

V. Svetsov, M. Popova, V. Rybakov, V. Artemiev, S. Medveduk, “Jet and vortex flow induced by anisotropic blast wave: experimental and computational study,” Shock Waves 7, 325–334 (1997).
[CrossRef]

Sedov, L. I.

L. I. Sedov, Similarity and Dimensional Methods in Mechanics, 2nd ed. (Academic, New York, 1959).

Settles, G. S.

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, New York, 2001).
[CrossRef]

Simeonsson, J. B.

Sklizkov, G. V.

G. V. Sklizkov, “Lasers in high-speed photography,” in Laser Handbook, F. T. Arrechi, E. O. Schulz-DuBois, eds. (North-Holland, New York, 1972), Vol. 2, Part F3, pp. 1545–1576.

Smith, D. C.

D. C. Smith, “Laser induced gas breakdown and plasma interaction,” presented at AIAA 38th Aerospace Sciences Meeting and Exhibit, AIAA paper 2000-716, Reno, Nev., 10–13 Jan 2000.

Steiner, H.

H. Steiner, W. Gretler, T. Hirschler, “Numerical solution for spherical laser-driven shock waves,” Shock Waves 8, 139–147 (1998).
[CrossRef]

H. Steiner, W. Gretler, “The propagation of spherical and cylindrical shock waves in real gases,” Phys. Fluids 6, 2154–2164 (1994).
[CrossRef]

Stricker, J.

J. Stricker, J. G. Parker, “Experimental investigations of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064 µ,” J. Appl. Phys. 53, 851–855 (1982).
[CrossRef]

Sultan, G.

G. Baravian, J. Godart, G. Sultan, “Multiphoton ionization of molecular nitrogen by a neodymium-glass laser,” Phys. Rev. A 25, 1483–1495 (1982).
[CrossRef]

Sun, M.

Z. Jiang, K. Takayama, K. P. B. Moosad, O. Onodera, M. Sun, “Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing,” Shock Waves 8, 337–349 (1998).
[CrossRef]

Svetsov, V.

V. Svetsov, M. Popova, V. Rybakov, V. Artemiev, S. Medveduk, “Jet and vortex flow induced by anisotropic blast wave: experimental and computational study,” Shock Waves 7, 325–334 (1997).
[CrossRef]

Syverud, A. N.

M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, A. N. Syverud, “JANAF thermochemical tables. Third edition,” J. Phys. Chem. Ref. Data 14, 1–186 (1985).

Takayama, K.

Z. Jiang, K. Takayama, K. P. B. Moosad, O. Onodera, M. Sun, “Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing,” Shock Waves 8, 337–349 (1998).
[CrossRef]

Tang, Y.

Taylor, G.

G. Taylor, “The formation of a blast wave by a very intense explosion,” Proc. R. Soc. London Ser. A 201, 175–186 (1950).
[CrossRef]

Taylor, R. L.

R. L. Taylor, G. Caledonia, “Experimental determination of the cross-sections for neutral bremsstrahlung,” J. Quant. Spectrosc. Radiat. Transfer 9, 681–696 (1969).
[CrossRef]

Thorne, A.

A. Thorne, U. Litzén, S. Johansson, Spectrophysics, Principles and Applications (Springer-Verlag, New York, 1999), Chap. 9, pp. 220–222.

VanDoormal, P. J.

P. J. VanDoormal, G. D. Raithby, “Enhancements of the simple method for predicting incompressible fluid flows,” Numer. Heat Transfer 7, 147–163 (1984).

Weyl, G. M.

G. M. Weyl, “Physics of laser-induced breakdown: an update,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds, 1st. ed. (Marcel Dekker, New York, 1989), pp. 1–67.

Wilke, C. R.

C. R. Wilke, “A viscosity equation for gas mixtures.” J. Chem. Phys. 18, 517–519 (1950).
[CrossRef]

Williams, F. A.

E. Gutheil, G. Balakrishnan, F. A. Williams, “Structure and extinction of hydrogen-air diffusion flames,” in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters, B. Rogg, eds. (Springer-Verlag, New York, 1993), pp. 177–195.
[CrossRef]

Yan, H.

H. Yan, R. Adelgren, M. Boguszko, G. Elliott, D. Knight, “Laser energy deposition in quiescent air,” presented at AIAA 41st Aerospace Sciences Meeting and Exhibit, AIAA paper 2003-1051, Reno, Nev., 6–9 Jan. 2003.

Appl. Opt. (2)

J. Appl. Phys. (1)

J. Stricker, J. G. Parker, “Experimental investigations of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064 µ,” J. Appl. Phys. 53, 851–855 (1982).
[CrossRef]

J. Chem. Phys. (1)

C. R. Wilke, “A viscosity equation for gas mixtures.” J. Chem. Phys. 18, 517–519 (1950).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, A. N. Syverud, “JANAF thermochemical tables. Third edition,” J. Phys. Chem. Ref. Data 14, 1–186 (1985).

J. Quant. Spectrosc. Radiat. Transfer (2)

R. L. Taylor, G. Caledonia, “Experimental determination of the cross-sections for neutral bremsstrahlung,” J. Quant. Spectrosc. Radiat. Transfer 9, 681–696 (1969).
[CrossRef]

Y.-L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 7, 91–103 (2000).
[CrossRef]

Numer. Heat Transfer (1)

P. J. VanDoormal, G. D. Raithby, “Enhancements of the simple method for predicting incompressible fluid flows,” Numer. Heat Transfer 7, 147–163 (1984).

Opt. Express (1)

Phys. Fluids (1)

H. Steiner, W. Gretler, “The propagation of spherical and cylindrical shock waves in real gases,” Phys. Fluids 6, 2154–2164 (1994).
[CrossRef]

Phys. Rev. A (1)

G. Baravian, J. Godart, G. Sultan, “Multiphoton ionization of molecular nitrogen by a neodymium-glass laser,” Phys. Rev. A 25, 1483–1495 (1982).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

G. Taylor, “The formation of a blast wave by a very intense explosion,” Proc. R. Soc. London Ser. A 201, 175–186 (1950).
[CrossRef]

Rep. Prog. Phys. (1)

C. Grey Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[CrossRef]

Shock Waves (3)

V. Svetsov, M. Popova, V. Rybakov, V. Artemiev, S. Medveduk, “Jet and vortex flow induced by anisotropic blast wave: experimental and computational study,” Shock Waves 7, 325–334 (1997).
[CrossRef]

H. Steiner, W. Gretler, T. Hirschler, “Numerical solution for spherical laser-driven shock waves,” Shock Waves 8, 139–147 (1998).
[CrossRef]

Z. Jiang, K. Takayama, K. P. B. Moosad, O. Onodera, M. Sun, “Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing,” Shock Waves 8, 337–349 (1998).
[CrossRef]

Other (24)

H. Yan, R. Adelgren, M. Boguszko, G. Elliott, D. Knight, “Laser energy deposition in quiescent air,” presented at AIAA 41st Aerospace Sciences Meeting and Exhibit, AIAA paper 2003-1051, Reno, Nev., 6–9 Jan. 2003.

D. Knight, “Survey of aerodynamic flow control at high speed by energy deposition,” presented at 41st Aerospace Sciences Meeting and Exhibit, AIAA paper 2003-525, Reno, Nev., 6–9 Jan. 2003.

I. G. Dors, “Laser spark ignition modeling,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 2000).

Y. Chen, “Laser-induced gas breakdown and ignition,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 1998).

D. H. Plemmons, “Laser-spark ignition and the NH radical,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 1996).

Y.-L. Chen, University of Tennessee Space Institute, Tullahoma, Tenn. 37388 (personal communication, 1999).

W. Qin, University of Tennessee Space Institute, Tullahoma, Tenn. 37388 (personal communication, 2000).

L. I. Sedov, Similarity and Dimensional Methods in Mechanics, 2nd ed. (Academic, New York, 1959).

Computational Fluid Dynamics Research Corporation, 215 Wynn Drive, Huntville, Ala. 35805.

G. V. Sklizkov, “Lasers in high-speed photography,” in Laser Handbook, F. T. Arrechi, E. O. Schulz-DuBois, eds. (North-Holland, New York, 1972), Vol. 2, Part F3, pp. 1545–1576.

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, New York, 2001).
[CrossRef]

C. G. Parigger, D. H. Plemmons, J. W. L. Lewis, G. Guan, Y. L. Chen, “Visualization of laser-induced plasma,” http://view.utsi.edu/cparigge/shadow/airimages.html .

A. Thorne, U. Litzén, S. Johansson, Spectrophysics, Principles and Applications (Springer-Verlag, New York, 1999), Chap. 9, pp. 220–222.

C. E. Moore, Hydrogen through Vanadium, Vol. I of Atomic Energy Levels Circ. Nat. Bur. Stand. (V.S.) Circ.467 (1949).

Computational Fluid Dynamics Research Corporation, CFD-ACE Theory Manual, 5th ed. (Computational Fluid Dynamics Research Corporation, Huntsville, Ala., 1998).

B. McBride, S. Gordon, “Chemical equilibrium program CEA,” NASA report RP-1311 (National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio, 1996).

D. C. Smith, “Laser induced gas breakdown and plasma interaction,” presented at AIAA 38th Aerospace Sciences Meeting and Exhibit, AIAA paper 2000-716, Reno, Nev., 10–13 Jan 2000.

G. M. Weyl, “Physics of laser-induced breakdown: an update,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds, 1st. ed. (Marcel Dekker, New York, 1989), pp. 1–67.

R. G. Root, “Modeling of post-breakdown phenomena,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, A. Cremers, eds., 1st ed. (Marcel Dekker, New York, 1989), pp. 69–103.

C. Grey Morgan, “Laser-produced plasmas,” in Radiative Processes in Discharge Plasmas, J. M. Proud, L. H. Luessen, eds. Vol. 149NATO Advanced Study Institute on Radiative Processes in Discharge Plasmas (Plenum, New York, 1985), pp. 457–507.

C. G. Parigger, I. G. Dors, “Laser-induced breakdown: pressure and temperature dynamics,” in Laser Induced Plasma Spectrosocopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics series (Optical Society of America, Washington, D.C., 2002), pp. 78–79.

I. Dors, C. Parigger, J. W. L. Lewis, “Fluid dynamic effects following laser-induced optical breakdown,” 38th Aerospace Sciences Meeting and Exhibit, paper AIAA 2000-717, Reno, Nev., 10–13 Jan. 2000.

M. I. Boulos, P. Fäuchais, Pfender, “Thermal Plasmas: Fundamentals and Applications, 1st ed. (Plenum, New York, New York, 1994), App. pp. 385–448.

E. Gutheil, G. Balakrishnan, F. A. Williams, “Structure and extinction of hydrogen-air diffusion flames,” in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters, B. Rogg, eds. (Springer-Verlag, New York, 1993), pp. 177–195.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Shadowgraph images for 50-mJ breakdown pulses. The backlight source was operated at 80 Hz; therefore a superposition of images at two time delays is shown: at the indicated delay, and due to the double exposure at the indicated delay plus 12.5 ms. The laser beam propagated from left to right. The shock wave in the picture labeled 100 µs was due to reflection from the surface (shown by dark areas at the bottom of the images).

Fig. 2
Fig. 2

Initial temperature profile representing the energy deposition of the laser pulse subsequent to laser-pulse termination. Spatial dimensions along the optic (horizontal) axis and the perpendicular axis are in units of millimeters. The temperature values are in degrees Kelvin. The central region of the profile corresponds to the top of the selected gray scale.

Fig. 3
Fig. 3

Initial pressure profile including ionization and dissociation effects of air subsequent to laser-pulse termination. Spatial dimensions along the x axis (horizontal) and the perpendicular axis are in units of millimeters. The pressure values are in pascals. The central region of the profile corresponds to the top of the selected gray scale.

Fig. 4
Fig. 4

Comparison of the measured (squares with error bars) and predicted blast wave radii subsequent to laser-induced optical breakdown of air.

Fig. 5
Fig. 5

Computationally predicted temperature profile of laser spark decay in air, 32 µs after optical breakdown; the arrows represent the velocity field. Spatial dimensions along the x axis are in the units of millimeters; the vertical dimension shares the same scale. The temperature values displayed are in degrees Kelvin. The central region of the ring surrounding the optic axis corresponds to the top of the selected gray scale.

Fig. 6
Fig. 6

Experimental (top) and computationally predicted (bottom) shadow-graphs & 5 µs after optical breakdown of air.

Fig. 7
Fig. 7

Experimental (top) and computationally predicted (bottom) shadowgraphs 100 µs after optical breakdown of air.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P=i=1Ns ñi RT,
Pr=ηcp/ρκ,
Sc=η/ρD,

Metrics