Abstract

A stable variant of the near-end solution has been developed for inversion of lidar signals measured in clear atmospheres. The inversion is based on the use of reference values of the extinction coefficient obtained with a nephelometer at the lidar measurement site. The inversion method, based on a combination of the optical depth and boundary point solutions, is illustrated by simulated and experimental data.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Düsterdiek, “Lidar, nephelometer, and in situ aerosol experiments in Southern Ontario,” J. Geophys. Res. 101, 19199–19209 (1996).
    [CrossRef]
  2. K. J. Voss, E. J. Welton, P. K. Quinn, J. Johnson, A. M. Thompson, H. R. Gordon, “Lidar measurements during Aerosols99,” J. Geophys. Res. 106, 20821–20831 (2001).
    [CrossRef]
  3. F. Marenco, V. Santacesaria, A. F. Baus, D. Balis, A. di Sarra, A. Papayannis, C. Zerefos, “Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (Photochemical Activity and Solar Ultraviolet Radiation campaign),” Appl. Opt. 36, 6875–6886 (1997).
    [CrossRef]
  4. T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
    [CrossRef] [PubMed]
  5. Y. Sasano, “Tropospheric aerosol extinction coefficient properties derived from scanning lidar measurements over Tsukiba, Japan, from 1990 to 1993,” Appl. Opt. 35, 4941–4952 (1996).
    [CrossRef] [PubMed]
  6. C. A. Brock, L. F. Radke, P. V. Hobbs, “Sulfur in particles in Arctic hazes derived from airborne in situ and lidar measurements,” J. Geophys. Res. 95, 22369–22387 (1990).
    [CrossRef]
  7. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. I. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
    [CrossRef]
  8. C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
    [CrossRef]
  9. C. M. R. Platt, “Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements,” J. Appl. Meteorol. 18, 1130–1143 (1979).
    [CrossRef]
  10. J. Heintzenberg, R. J. Charlson, “Design and application of the integrating nephelometer: a review,” J. Atmos. Oceanic Technol. 13, 987–1000 (1996).
    [CrossRef]
  11. T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
    [CrossRef]
  12. W. P. Arnott, H. Moosmüller, C. F. Rogers, T. Jin, R. Bruch, “Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description,” Atmos. Environ. 33, 2845–2852 (1999).
    [CrossRef]
  13. H. Moosmüller, W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, D. L. Dietrich, “Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality (Colorado 1996/1997),” J. Geophys. Res. 103, 28149–28157 (1998).
    [CrossRef]
  14. J. A. Weinman, “Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar,” Appl. Opt. 27, 3994–4001 (1988).
    [CrossRef] [PubMed]
  15. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  16. V. A. Kovalev, H. Moosmüller, “Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere,” Appl. Opt. 33, 6499–6507 (1994).
    [CrossRef] [PubMed]
  17. V. A. Kovalev, “Sensitivity of the lidar equation solution to errors in the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient,” Appl. Opt. 34, 3457–3462 (1995).
    [CrossRef] [PubMed]
  18. J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
    [CrossRef]
  19. P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992), p. 328.
  20. F. F. Hall, R. E. Cupp, S. W. Troxel, “Cirrus cloud transmittance in the infrared measured with a CO2 lidar,” Appl. Opt. 12, 2510–2516 (1988).
    [CrossRef]
  21. K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992).
    [CrossRef]
  22. S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995).
    [CrossRef] [PubMed]

2001 (1)

K. J. Voss, E. J. Welton, P. K. Quinn, J. Johnson, A. M. Thompson, H. R. Gordon, “Lidar measurements during Aerosols99,” J. Geophys. Res. 106, 20821–20831 (2001).
[CrossRef]

2000 (1)

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

1999 (1)

W. P. Arnott, H. Moosmüller, C. F. Rogers, T. Jin, R. Bruch, “Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description,” Atmos. Environ. 33, 2845–2852 (1999).
[CrossRef]

1998 (2)

H. Moosmüller, W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, D. L. Dietrich, “Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality (Colorado 1996/1997),” J. Geophys. Res. 103, 28149–28157 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. I. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

1997 (1)

1996 (4)

Y. Sasano, “Tropospheric aerosol extinction coefficient properties derived from scanning lidar measurements over Tsukiba, Japan, from 1990 to 1993,” Appl. Opt. 35, 4941–4952 (1996).
[CrossRef] [PubMed]

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Düsterdiek, “Lidar, nephelometer, and in situ aerosol experiments in Southern Ontario,” J. Geophys. Res. 101, 19199–19209 (1996).
[CrossRef]

J. Heintzenberg, R. J. Charlson, “Design and application of the integrating nephelometer: a review,” J. Atmos. Oceanic Technol. 13, 987–1000 (1996).
[CrossRef]

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

1995 (2)

1994 (2)

1992 (1)

K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992).
[CrossRef]

1990 (1)

C. A. Brock, L. F. Radke, P. V. Hobbs, “Sulfur in particles in Arctic hazes derived from airborne in situ and lidar measurements,” J. Geophys. Res. 95, 22369–22387 (1990).
[CrossRef]

1988 (2)

F. F. Hall, R. E. Cupp, S. W. Troxel, “Cirrus cloud transmittance in the infrared measured with a CO2 lidar,” Appl. Opt. 12, 2510–2516 (1988).
[CrossRef]

J. A. Weinman, “Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar,” Appl. Opt. 27, 3994–4001 (1988).
[CrossRef] [PubMed]

1981 (1)

1980 (1)

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

1979 (1)

C. M. R. Platt, “Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements,” J. Appl. Meteorol. 18, 1130–1143 (1979).
[CrossRef]

Ahlquist, N. A.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Anderson, T. L.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Arnott, W. P.

W. P. Arnott, H. Moosmüller, C. F. Rogers, T. Jin, R. Bruch, “Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description,” Atmos. Environ. 33, 2845–2852 (1999).
[CrossRef]

H. Moosmüller, W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, D. L. Dietrich, “Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality (Colorado 1996/1997),” J. Geophys. Res. 103, 28149–28157 (1998).
[CrossRef]

Balis, D.

Bates, T. S.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Baus, A. F.

Bevington, P. R.

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992), p. 328.

Brock, C. A.

C. A. Brock, L. F. Radke, P. V. Hobbs, “Sulfur in particles in Arctic hazes derived from airborne in situ and lidar measurements,” J. Geophys. Res. 95, 22369–22387 (1990).
[CrossRef]

Brook, J.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Düsterdiek, “Lidar, nephelometer, and in situ aerosol experiments in Southern Ontario,” J. Geophys. Res. 101, 19199–19209 (1996).
[CrossRef]

Bruch, R.

W. P. Arnott, H. Moosmüller, C. F. Rogers, T. Jin, R. Bruch, “Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description,” Atmos. Environ. 33, 2845–2852 (1999).
[CrossRef]

Bruneau, D.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

Caldow, R.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Charlson, R. J.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

J. Heintzenberg, R. J. Charlson, “Design and application of the integrating nephelometer: a review,” J. Atmos. Oceanic Technol. 13, 987–1000 (1996).
[CrossRef]

Chazette, P.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

Cho, B. S.

K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992).
[CrossRef]

Chow, J. C.

H. Moosmüller, W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, D. L. Dietrich, “Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality (Colorado 1996/1997),” J. Geophys. Res. 103, 28149–28157 (1998).
[CrossRef]

Covert, D. S.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Cupp, R. E.

F. F. Hall, R. E. Cupp, S. W. Troxel, “Cirrus cloud transmittance in the infrared measured with a CO2 lidar,” Appl. Opt. 12, 2510–2516 (1988).
[CrossRef]

di Sarra, A.

Dietrich, D. L.

H. Moosmüller, W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, D. L. Dietrich, “Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality (Colorado 1996/1997),” J. Geophys. Res. 103, 28149–28157 (1998).
[CrossRef]

Düsterdiek, T.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Düsterdiek, “Lidar, nephelometer, and in situ aerosol experiments in Southern Ontario,” J. Geophys. Res. 101, 19199–19209 (1996).
[CrossRef]

Evans, K. D.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. I. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

Ferrare, R. A.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. I. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

Flamant, C.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

Frazier, C. A.

H. Moosmüller, W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, D. L. Dietrich, “Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality (Colorado 1996/1997),” J. Geophys. Res. 103, 28149–28157 (1998).
[CrossRef]

Frouin, R.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

Georgi, B.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Düsterdiek, “Lidar, nephelometer, and in situ aerosol experiments in Southern Ontario,” J. Geophys. Res. 101, 19199–19209 (1996).
[CrossRef]

Gordon, H. R.

K. J. Voss, E. J. Welton, P. K. Quinn, J. Johnson, A. M. Thompson, H. R. Gordon, “Lidar measurements during Aerosols99,” J. Geophys. Res. 106, 20821–20831 (2001).
[CrossRef]

Guise-Bagley, L.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Düsterdiek, “Lidar, nephelometer, and in situ aerosol experiments in Southern Ontario,” J. Geophys. Res. 101, 19199–19209 (1996).
[CrossRef]

Hall, F. F.

F. F. Hall, R. E. Cupp, S. W. Troxel, “Cirrus cloud transmittance in the infrared measured with a CO2 lidar,” Appl. Opt. 12, 2510–2516 (1988).
[CrossRef]

Hayasaka, T.

Heintzenberg, J.

J. Heintzenberg, R. J. Charlson, “Design and application of the integrating nephelometer: a review,” J. Atmos. Oceanic Technol. 13, 987–1000 (1996).
[CrossRef]

Herman, B. M.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Hobbs, P. V.

C. A. Brock, L. F. Radke, P. V. Hobbs, “Sulfur in particles in Arctic hazes derived from airborne in situ and lidar measurements,” J. Geophys. Res. 95, 22369–22387 (1990).
[CrossRef]

Hoff, R. M.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Düsterdiek, “Lidar, nephelometer, and in situ aerosol experiments in Southern Ontario,” J. Geophys. Res. 101, 19199–19209 (1996).
[CrossRef]

Holm, R. L.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Jin, T.

W. P. Arnott, H. Moosmüller, C. F. Rogers, T. Jin, R. Bruch, “Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description,” Atmos. Environ. 33, 2845–2852 (1999).
[CrossRef]

Johnson, J.

K. J. Voss, E. J. Welton, P. K. Quinn, J. Johnson, A. M. Thompson, H. R. Gordon, “Lidar measurements during Aerosols99,” J. Geophys. Res. 106, 20821–20831 (2001).
[CrossRef]

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

Klett, J. D.

Kovalev, V. A.

Laucks, M. L.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Leifer, R.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. I. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

Leon, J. F.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

Livinston, J.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

Marenco, F.

Marshall, S. F.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Melfi, S. H.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. I. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

Moosmüller, H.

W. P. Arnott, H. Moosmüller, C. F. Rogers, T. Jin, R. Bruch, “Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description,” Atmos. Environ. 33, 2845–2852 (1999).
[CrossRef]

H. Moosmüller, W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, D. L. Dietrich, “Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality (Colorado 1996/1997),” J. Geophys. Res. 103, 28149–28157 (1998).
[CrossRef]

V. A. Kovalev, H. Moosmüller, “Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere,” Appl. Opt. 33, 6499–6507 (1994).
[CrossRef] [PubMed]

Ogren, J. A.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Papayannis, A.

Pelon, J.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

Platt, C. M. R.

C. M. R. Platt, “Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements,” J. Appl. Meteorol. 18, 1130–1143 (1979).
[CrossRef]

Quant, F. R.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Quinn, P. K.

K. J. Voss, E. J. Welton, P. K. Quinn, J. Johnson, A. M. Thompson, H. R. Gordon, “Lidar measurements during Aerosols99,” J. Geophys. Res. 106, 20821–20831 (2001).
[CrossRef]

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

Radke, L. F.

C. A. Brock, L. F. Radke, P. V. Hobbs, “Sulfur in particles in Arctic hazes derived from airborne in situ and lidar measurements,” J. Geophys. Res. 95, 22369–22387 (1990).
[CrossRef]

Reagan, J. A.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Robinson, D. K.

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992), p. 328.

Rogers, C. F.

W. P. Arnott, H. Moosmüller, C. F. Rogers, T. Jin, R. Bruch, “Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description,” Atmos. Environ. 33, 2845–2852 (1999).
[CrossRef]

H. Moosmüller, W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, D. L. Dietrich, “Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality (Colorado 1996/1997),” J. Geophys. Res. 103, 28149–28157 (1998).
[CrossRef]

Santacesaria, V.

Sasano, Y.

Sassen, K.

K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992).
[CrossRef]

Sem, G. J.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Sherman, L. E.

H. Moosmüller, W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, D. L. Dietrich, “Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality (Colorado 1996/1997),” J. Geophys. Res. 103, 28149–28157 (1998).
[CrossRef]

Spinhirne, J. D.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Staebler, R. M.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Düsterdiek, “Lidar, nephelometer, and in situ aerosol experiments in Southern Ontario,” J. Geophys. Res. 101, 19199–19209 (1996).
[CrossRef]

Takamura, T.

Thompson, A. M.

K. J. Voss, E. J. Welton, P. K. Quinn, J. Johnson, A. M. Thompson, H. R. Gordon, “Lidar measurements during Aerosols99,” J. Geophys. Res. 106, 20821–20831 (2001).
[CrossRef]

Trouillet, V.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

Troxel, S. W.

F. F. Hall, R. E. Cupp, S. W. Troxel, “Cirrus cloud transmittance in the infrared measured with a CO2 lidar,” Appl. Opt. 12, 2510–2516 (1988).
[CrossRef]

Voss, K. J.

K. J. Voss, E. J. Welton, P. K. Quinn, J. Johnson, A. M. Thompson, H. R. Gordon, “Lidar measurements during Aerosols99,” J. Geophys. Res. 106, 20821–20831 (2001).
[CrossRef]

Waggoner, A. P.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Weinman, J. A.

Welton, E. J.

K. J. Voss, E. J. Welton, P. K. Quinn, J. Johnson, A. M. Thompson, H. R. Gordon, “Lidar measurements during Aerosols99,” J. Geophys. Res. 106, 20821–20831 (2001).
[CrossRef]

Whiteman, D. N.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. I. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

Wiebe, H. A.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Düsterdiek, “Lidar, nephelometer, and in situ aerosol experiments in Southern Ontario,” J. Geophys. Res. 101, 19199–19209 (1996).
[CrossRef]

Wiedensohler, A.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Young, S. A.

Zerefos, C.

Appl. Opt. (9)

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[CrossRef] [PubMed]

J. A. Weinman, “Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar,” Appl. Opt. 27, 3994–4001 (1988).
[CrossRef] [PubMed]

V. A. Kovalev, H. Moosmüller, “Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere,” Appl. Opt. 33, 6499–6507 (1994).
[CrossRef] [PubMed]

T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
[CrossRef] [PubMed]

V. A. Kovalev, “Sensitivity of the lidar equation solution to errors in the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient,” Appl. Opt. 34, 3457–3462 (1995).
[CrossRef] [PubMed]

S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995).
[CrossRef] [PubMed]

Y. Sasano, “Tropospheric aerosol extinction coefficient properties derived from scanning lidar measurements over Tsukiba, Japan, from 1990 to 1993,” Appl. Opt. 35, 4941–4952 (1996).
[CrossRef] [PubMed]

F. Marenco, V. Santacesaria, A. F. Baus, D. Balis, A. di Sarra, A. Papayannis, C. Zerefos, “Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (Photochemical Activity and Solar Ultraviolet Radiation campaign),” Appl. Opt. 36, 6875–6886 (1997).
[CrossRef]

F. F. Hall, R. E. Cupp, S. W. Troxel, “Cirrus cloud transmittance in the infrared measured with a CO2 lidar,” Appl. Opt. 12, 2510–2516 (1988).
[CrossRef]

Atmos. Environ. (1)

W. P. Arnott, H. Moosmüller, C. F. Rogers, T. Jin, R. Bruch, “Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description,” Atmos. Environ. 33, 2845–2852 (1999).
[CrossRef]

J. Appl. Meteorol. (3)

C. M. R. Platt, “Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements,” J. Appl. Meteorol. 18, 1130–1143 (1979).
[CrossRef]

K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992).
[CrossRef]

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

J. Atmos. Oceanic Technol. (2)

J. Heintzenberg, R. J. Charlson, “Design and application of the integrating nephelometer: a review,” J. Atmos. Oceanic Technol. 13, 987–1000 (1996).
[CrossRef]

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

J. Geophys. Res. (5)

C. A. Brock, L. F. Radke, P. V. Hobbs, “Sulfur in particles in Arctic hazes derived from airborne in situ and lidar measurements,” J. Geophys. Res. 95, 22369–22387 (1990).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. I. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

H. Moosmüller, W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, D. L. Dietrich, “Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality (Colorado 1996/1997),” J. Geophys. Res. 103, 28149–28157 (1998).
[CrossRef]

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Düsterdiek, “Lidar, nephelometer, and in situ aerosol experiments in Southern Ontario,” J. Geophys. Res. 101, 19199–19209 (1996).
[CrossRef]

K. J. Voss, E. J. Welton, P. K. Quinn, J. Johnson, A. M. Thompson, H. R. Gordon, “Lidar measurements during Aerosols99,” J. Geophys. Res. 106, 20821–20831 (2001).
[CrossRef]

Tellus Ser. B (1)

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
[CrossRef]

Other (1)

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992), p. 328.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Lidar signal measured in a clear atmosphere. The slope direction of the lidar line of sight (27°) is arbitrarily selected from a vertical two-dimensional lidar scan.

Fig. 2
Fig. 2

Extinction coefficient profile retrieved from the signal in Fig. 1 (solid curve), its linear fit over the range from 300 to 800 m (bold line), and the reference value of the extinction coefficient used for the retrieval (black rectangular label at the Y axis). The nephelometer reading, measured at 530 nm, is 0.018 km-1; the corresponding reference value, calculated for the lidar wavelength 1064 nm, is 0.0044 km-1.

Fig. 3
Fig. 3

Range-corrected signal corresponding to a selected model extinction coefficient profile. The signal is artificially corrupted by noise and then used for the inversions shown in Figs. 4 and 5.

Fig. 4
Fig. 4

Inversion results obtained with the new solution. The dashed curve is the initial simulated profile of the particulate extinction coefficient, and the dotted curve with circles shows the retrieved profile. The solid curve is a linear fit for the retrieved profile over the altitude range from 300 to 500 m.

Fig. 5
Fig. 5

Extinction coefficient profile retrieved with the conventional near-end solution (curve with triangles). The dashed curve is the same as in Fig. 4. The reference value of the extinction coefficient, obtained from the readings of a ground-located nephelometer, is assumed to be valid for the altitude of the nearest available lidar bin at the altitude 300 m.

Fig. 6
Fig. 6

Example of a noisy lidar signal measured in a clear atmosphere.

Fig. 7
Fig. 7

Extinction coefficient profile versus altitude derived from the range-corrected signal shown in Fig. 6.

Fig. 8
Fig. 8

Range-corrected signal measured at 1064 nm, which contains a strong backscatter return from a distant localized smoke. An increased scale is used to show the signal at the near end.

Fig. 9
Fig. 9

Extinction coefficient profiles of distant smoke retrieved from the signal shown in Fig. 8 with the nephelometer readings used as reference data. The profiles are calculated with Π p,sm = 0.05 sr-1 (bold curve), Π p,sm = 0.04 sr-1 (solid curve), and Π p,sm = 0.03 sr-1 (solid curve with circles).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Pr=C0T02Πp,jr-2κpr+ajκmr×exp-2 r0rκpx+κmxdx,
aj= 3/8πΠp,j.
Yr= Πp,j-1 exp-2 r0raj-1βmxdx.
Sr=C0T02κWrexp-2 r0r κWxdx,
κWr=κpr+ajβmr.
r0r Sxdx= C0T0221-exp-2 r0r κWxdx,
κpr= 0.5 Sr11-Vmax2r0rmax Sxdx-r0r Sxdx-ajβmr,
Vmax2=Tpr0, rmax2Tmr0, r12a1Tmrn, rmax2an.
κpr= κpr=0+br,
Vmax,init2=1- 2κWr0Sr0r0rmax Sxdx,
ln κpr=lnκpr=0+b1r.
κpr= SrSrbκWrb-2 rbr Sxdx-ajκmr,

Metrics