Abstract

Single-shot transient-grating measurements for thermometry in pressurized reacting flows are examined in the context of rapid digital signal processing. Simple approaches are discussed for temperature determination and rejection of unwanted signals in real-time measurement applications. Examples of temperature data in pressurized postflame gases are presented in the form of probability-density functions (PDFs). Three contributions to the PDF half-widths are discussed. Analysis of phase-matching requirements indicates that beam steering as a result of density fluctuations affects the signal amplitude but not the grating period. Therefore, such stochastic beam deviations have little effect on the derived temperatures. Mode noise on the cw probe beam as well as linear light scattering are found to be insignificant in the frequency range of the observed transient-grating acoustic signature. Use of a single-mode laser for the pump beams is shown to enhance the signal intensity.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Eichler, P. Gunter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
    [CrossRef]
  2. J. R. Salcedo, A. E. Siegman, D. D. Dlott, M. D. Fayer, “Dynamics of energy transport in molecular crystals: the picosecond transient-grating method,” Phys. Rev. Lett. 41, 131–134 (1978).
    [CrossRef]
  3. H. Tanaka, T. Sonehara, S. Takagi, “A new phase-coherent light scattering method: first observation of complex Brillouin spectra,” Phys. Rev. Lett. 79, 881–884 (1997).
    [CrossRef]
  4. Y. X. Yan, L. T. Cheng, K. A. Nelson, “The temperature-dependent distribution of relaxation times in glycerol: time-domain light scattering study of acoustic and mountain-mode behavior in the 20 MHz–3 GHz frequency range,” J. Chem. Phys. 88, 6477–6486 (1988).
    [CrossRef]
  5. X. R. Zhu, D. J. McGraw, J. M. Harris, “Holographic spectroscopy, diffraction from laser-induced gratings,” Anal. Chem. 64, 710A–719A (1992).
  6. D. E. Govoni, J. A. Booze, A. Sinha, F. F. Crim, “The non-resonant signal in laser-induced grating spectroscopy of gases,” Chem. Phys. Lett. 216, 525–529 (1993).
    [CrossRef]
  7. E. B. Cummings, “Laser-induced thermal acoustics, simple accurate gas measurements,” Opt. Lett. 19, 1361–1363 (1994).
    [CrossRef]
  8. A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
    [CrossRef] [PubMed]
  9. P. M. Danehy, P. H. Paul, R. L. Farrow, “Thermal grating contributions to degenerated four-wave mixing in nitric oxide,” J. Opt. Soc. Am. B 12, 1564–1576 (1995), and references therein.
    [CrossRef]
  10. S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, “Laser-induced thermal grating effects in flames,” Opt. Lett. 19, 1681–1683 (1994).
    [CrossRef] [PubMed]
  11. P. H. Paul, R. L. Farrow, P. M. Danehy, “Gas-phase thermal-grating contributions to four-wave mixing,” J. Opt. Soc. Am. B 12, 384–392 (1995).
    [CrossRef]
  12. E. B. Cummings, I. A. Leyva, H. G. Hornung, “Laser-induced thermal acoustics (LITA) signals from finite beams,” Appl. Opt. 34, 3290–3302 (1995).
    [CrossRef] [PubMed]
  13. W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
    [CrossRef]
  14. W. Hubschmid, R. Bombach, B. Hemmerling, A. Stampanoni-Panariello, “Sound-velocity measurements in gases by laser-induced electrostrictive gratings,” Appl. Phys. B 62, 103–107 (1996).
    [CrossRef]
  15. H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal gratings experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
    [CrossRef]
  16. B. Hemmerling, D. N. Kozlov, “Generation and temporally resolved detection of laser-induced gratings by a single, pulsed Nd:YAG laser,” Appl. Opt. 38, 1001–1007 (1999).
    [CrossRef]
  17. S. Rozouvan, T. Dreier, “Polarization-dependent laser-induced grating measurements,” Opt. Lett. 24, 1596–1598 (1999).
    [CrossRef]
  18. M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environment,” J. Propul. Power 15, 119–127 (1999).
    [CrossRef]
  19. A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
    [CrossRef]
  20. B. Hemmerling, D. N. Kozlov, “Generation and temporally resolved detection of laser-induced gratings by a single, pulsed Nd:YAG laser,” Appl. Opt. 38, 1001–1007 (1999).
    [CrossRef]
  21. H. Latzel, A. Rieizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerated four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
    [CrossRef]
  22. R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustic thermometry in air,” Appl. Opt. 38, 577–584 (1999).
    [CrossRef]
  23. P. M. Morse, K. U. Ingard, Theoretical Acoustics (Princeton U. Press, Princeton, N.J., 1968), Chap. 13.
  24. S. Schlamp, E. B. Cummings, H. G. Hornung, “Beam misalignments and fluid velocities in laser-induced thermal acoustics,” Appl. Opt. 38, 5724–5733 (1999).
    [CrossRef]
  25. J. S. Walker, Fast Fourier Transforms (CRC Press, Boca Raton, Fla., 1996), Chap. 5.
  26. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, Mass., 1988), Chap. 12.
  27. E. B. Cummings, H. G. Hornung, M. S. Brown, P. A. DeBarber, “Measurement of gas-phase sound speed and thermal diffusivity over a broad pressure range using laser-induced thermal acoustics,” Opt. Lett. 20, 1577–1579 (1995).
    [CrossRef] [PubMed]
  28. S. Schlamp, H. G. Hornung, T. H. Sobota, E. B. Cummings, “Accuracy and uncertainty of single-shot, nonresonant laser-induced thermal acoustics,” Appl. Opt. 39, 5477–5481 (2000).
    [CrossRef]
  29. J. H. Keenan, J. Chao, J. Kaye, Gas Tables, International Version (Krieger, Malabar, Fla., 1992).
  30. R. Trebino, E. K. Gustafson, A. E. Siegman, “Fourth-order partial-coherence effects in the formation of integrated-intensity gratings with pulsed light sources,” J. Opt. Soc. Am. B 3, 1295–1304 (1986).
    [CrossRef]
  31. A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers,” Phys. Rev. E 51, 655–662 (1995).
    [CrossRef]
  32. D. J. W. Walker, R. B. Williams, P. Ewart, “Thermal grating velocimetry,” Opt. Lett. 23, 1316–1318 (1998).
    [CrossRef]
  33. D. N. Kozlov, B. Hemmerling, A. Stempanoni-Pananriello, “Measurement of gas jet flow velocities using laser-induced electrostrictive gratings,” Appl. Phys. B 71, 585–591 (2000).
    [CrossRef]
  34. S. Schlamp, E. B. Cummings, T. H. Sobota, “Laser-induced thermal-acoustic velocimetry with heterodyne detection,” Opt. Lett. 25, 224–227 (2000).
    [CrossRef]
  35. B. Hemmerling, D. N. Kozlov, A. Stampanoni-Panariello, “Temperature and flow-velocity measurements by use of laser-induced electrostrictive gratings,” Opt. Lett. 25, 1340–1342 (2000).
    [CrossRef]
  36. M. Brown, Innovative Scientific Solutions Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638, and B. Hemmerling, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland (personal communication, 2001).

2000 (4)

1999 (6)

1998 (3)

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

H. Latzel, A. Rieizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerated four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

D. J. W. Walker, R. B. Williams, P. Ewart, “Thermal grating velocimetry,” Opt. Lett. 23, 1316–1318 (1998).
[CrossRef]

1997 (2)

H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal gratings experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
[CrossRef]

H. Tanaka, T. Sonehara, S. Takagi, “A new phase-coherent light scattering method: first observation of complex Brillouin spectra,” Phys. Rev. Lett. 79, 881–884 (1997).
[CrossRef]

1996 (1)

W. Hubschmid, R. Bombach, B. Hemmerling, A. Stampanoni-Panariello, “Sound-velocity measurements in gases by laser-induced electrostrictive gratings,” Appl. Phys. B 62, 103–107 (1996).
[CrossRef]

1995 (7)

1994 (2)

1993 (1)

D. E. Govoni, J. A. Booze, A. Sinha, F. F. Crim, “The non-resonant signal in laser-induced grating spectroscopy of gases,” Chem. Phys. Lett. 216, 525–529 (1993).
[CrossRef]

1992 (1)

X. R. Zhu, D. J. McGraw, J. M. Harris, “Holographic spectroscopy, diffraction from laser-induced gratings,” Anal. Chem. 64, 710A–719A (1992).

1988 (1)

Y. X. Yan, L. T. Cheng, K. A. Nelson, “The temperature-dependent distribution of relaxation times in glycerol: time-domain light scattering study of acoustic and mountain-mode behavior in the 20 MHz–3 GHz frequency range,” J. Chem. Phys. 88, 6477–6486 (1988).
[CrossRef]

1986 (1)

1978 (1)

J. R. Salcedo, A. E. Siegman, D. D. Dlott, M. D. Fayer, “Dynamics of energy transport in molecular crystals: the picosecond transient-grating method,” Phys. Rev. Lett. 41, 131–134 (1978).
[CrossRef]

Balla, R. J.

Bombach, R.

W. Hubschmid, R. Bombach, B. Hemmerling, A. Stampanoni-Panariello, “Sound-velocity measurements in gases by laser-induced electrostrictive gratings,” Appl. Phys. B 62, 103–107 (1996).
[CrossRef]

Booze, J. A.

D. E. Govoni, J. A. Booze, A. Sinha, F. F. Crim, “The non-resonant signal in laser-induced grating spectroscopy of gases,” Chem. Phys. Lett. 216, 525–529 (1993).
[CrossRef]

Brown, M. S.

Chao, J.

J. H. Keenan, J. Chao, J. Kaye, Gas Tables, International Version (Krieger, Malabar, Fla., 1992).

Cheng, L. T.

Y. X. Yan, L. T. Cheng, K. A. Nelson, “The temperature-dependent distribution of relaxation times in glycerol: time-domain light scattering study of acoustic and mountain-mode behavior in the 20 MHz–3 GHz frequency range,” J. Chem. Phys. 88, 6477–6486 (1988).
[CrossRef]

Crim, F. F.

D. E. Govoni, J. A. Booze, A. Sinha, F. F. Crim, “The non-resonant signal in laser-induced grating spectroscopy of gases,” Chem. Phys. Lett. 216, 525–529 (1993).
[CrossRef]

Cummings, E. B.

Danehy, P. M.

DeBarber, P. A.

Dillmann, M.

H. Latzel, A. Rieizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerated four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

Dlott, D. D.

J. R. Salcedo, A. E. Siegman, D. D. Dlott, M. D. Fayer, “Dynamics of energy transport in molecular crystals: the picosecond transient-grating method,” Phys. Rev. Lett. 41, 131–134 (1978).
[CrossRef]

Dreier, T.

S. Rozouvan, T. Dreier, “Polarization-dependent laser-induced grating measurements,” Opt. Lett. 24, 1596–1598 (1999).
[CrossRef]

H. Latzel, A. Rieizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerated four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal gratings experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
[CrossRef]

Eichler, H. J.

H. J. Eichler, P. Gunter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Ewart, P.

H. Latzel, A. Rieizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerated four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

D. J. W. Walker, R. B. Williams, P. Ewart, “Thermal grating velocimetry,” Opt. Lett. 23, 1316–1318 (1998).
[CrossRef]

Fantoni, R.

H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal gratings experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
[CrossRef]

Farrow, R. L.

Fayer, M. D.

J. R. Salcedo, A. E. Siegman, D. D. Dlott, M. D. Fayer, “Dynamics of energy transport in molecular crystals: the picosecond transient-grating method,” Phys. Rev. Lett. 41, 131–134 (1978).
[CrossRef]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, Mass., 1988), Chap. 12.

Forsman, J. W.

Giorgi, M.

H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal gratings experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
[CrossRef]

Govoni, D. E.

D. E. Govoni, J. A. Booze, A. Sinha, F. F. Crim, “The non-resonant signal in laser-induced grating spectroscopy of gases,” Chem. Phys. Lett. 216, 525–529 (1993).
[CrossRef]

Gunter, P.

H. J. Eichler, P. Gunter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Gustafson, E. K.

Harris, J. M.

X. R. Zhu, D. J. McGraw, J. M. Harris, “Holographic spectroscopy, diffraction from laser-induced gratings,” Anal. Chem. 64, 710A–719A (1992).

Hart, R. C.

Heinze, J.

H. Latzel, A. Rieizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerated four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

Hemmerling, B.

D. N. Kozlov, B. Hemmerling, A. Stempanoni-Pananriello, “Measurement of gas jet flow velocities using laser-induced electrostrictive gratings,” Appl. Phys. B 71, 585–591 (2000).
[CrossRef]

B. Hemmerling, D. N. Kozlov, A. Stampanoni-Panariello, “Temperature and flow-velocity measurements by use of laser-induced electrostrictive gratings,” Opt. Lett. 25, 1340–1342 (2000).
[CrossRef]

B. Hemmerling, D. N. Kozlov, “Generation and temporally resolved detection of laser-induced gratings by a single, pulsed Nd:YAG laser,” Appl. Opt. 38, 1001–1007 (1999).
[CrossRef]

B. Hemmerling, D. N. Kozlov, “Generation and temporally resolved detection of laser-induced gratings by a single, pulsed Nd:YAG laser,” Appl. Opt. 38, 1001–1007 (1999).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

W. Hubschmid, R. Bombach, B. Hemmerling, A. Stampanoni-Panariello, “Sound-velocity measurements in gases by laser-induced electrostrictive gratings,” Appl. Phys. B 62, 103–107 (1996).
[CrossRef]

W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers,” Phys. Rev. E 51, 655–662 (1995).
[CrossRef]

Herring, G. C.

Hornung, H. G.

Hubschmid, W.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

W. Hubschmid, R. Bombach, B. Hemmerling, A. Stampanoni-Panariello, “Sound-velocity measurements in gases by laser-induced electrostrictive gratings,” Appl. Phys. B 62, 103–107 (1996).
[CrossRef]

W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers,” Phys. Rev. E 51, 655–662 (1995).
[CrossRef]

Ingard, K. U.

P. M. Morse, K. U. Ingard, Theoretical Acoustics (Princeton U. Press, Princeton, N.J., 1968), Chap. 13.

Kaye, J.

J. H. Keenan, J. Chao, J. Kaye, Gas Tables, International Version (Krieger, Malabar, Fla., 1992).

Keenan, J. H.

J. H. Keenan, J. Chao, J. Kaye, Gas Tables, International Version (Krieger, Malabar, Fla., 1992).

Kozlov, D. N.

Latzel, H.

H. Latzel, A. Rieizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerated four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal gratings experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
[CrossRef]

Leyva, I. A.

Lloyd, G. M.

H. Latzel, A. Rieizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerated four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

M. Danehy, P.

McGraw, D. J.

X. R. Zhu, D. J. McGraw, J. M. Harris, “Holographic spectroscopy, diffraction from laser-induced gratings,” Anal. Chem. 64, 710A–719A (1992).

Morse, P. M.

P. M. Morse, K. U. Ingard, Theoretical Acoustics (Princeton U. Press, Princeton, N.J., 1968), Chap. 13.

Nelson, K. A.

Y. X. Yan, L. T. Cheng, K. A. Nelson, “The temperature-dependent distribution of relaxation times in glycerol: time-domain light scattering study of acoustic and mountain-mode behavior in the 20 MHz–3 GHz frequency range,” J. Chem. Phys. 88, 6477–6486 (1988).
[CrossRef]

Paul, P. H.

Pohl, D. W.

H. J. Eichler, P. Gunter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, Mass., 1988), Chap. 12.

Rahn, L. A.

Rieizler, A.

H. Latzel, A. Rieizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerated four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

Roberts, W. L.

M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environment,” J. Propul. Power 15, 119–127 (1999).
[CrossRef]

Rozouvan, S.

Salcedo, J. R.

J. R. Salcedo, A. E. Siegman, D. D. Dlott, M. D. Fayer, “Dynamics of energy transport in molecular crystals: the picosecond transient-grating method,” Phys. Rev. Lett. 41, 131–134 (1978).
[CrossRef]

Schlamp, S.

Siegman, A. E.

R. Trebino, E. K. Gustafson, A. E. Siegman, “Fourth-order partial-coherence effects in the formation of integrated-intensity gratings with pulsed light sources,” J. Opt. Soc. Am. B 3, 1295–1304 (1986).
[CrossRef]

J. R. Salcedo, A. E. Siegman, D. D. Dlott, M. D. Fayer, “Dynamics of energy transport in molecular crystals: the picosecond transient-grating method,” Phys. Rev. Lett. 41, 131–134 (1978).
[CrossRef]

Sinha, A.

D. E. Govoni, J. A. Booze, A. Sinha, F. F. Crim, “The non-resonant signal in laser-induced grating spectroscopy of gases,” Chem. Phys. Lett. 216, 525–529 (1993).
[CrossRef]

Sobota, T. H.

Sonehara, T.

H. Tanaka, T. Sonehara, S. Takagi, “A new phase-coherent light scattering method: first observation of complex Brillouin spectra,” Phys. Rev. Lett. 79, 881–884 (1997).
[CrossRef]

Stampanoni-Panariello, A.

B. Hemmerling, D. N. Kozlov, A. Stampanoni-Panariello, “Temperature and flow-velocity measurements by use of laser-induced electrostrictive gratings,” Opt. Lett. 25, 1340–1342 (2000).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

W. Hubschmid, R. Bombach, B. Hemmerling, A. Stampanoni-Panariello, “Sound-velocity measurements in gases by laser-induced electrostrictive gratings,” Appl. Phys. B 62, 103–107 (1996).
[CrossRef]

W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers,” Phys. Rev. E 51, 655–662 (1995).
[CrossRef]

Stempanoni-Pananriello, A.

D. N. Kozlov, B. Hemmerling, A. Stempanoni-Pananriello, “Measurement of gas jet flow velocities using laser-induced electrostrictive gratings,” Appl. Phys. B 71, 585–591 (2000).
[CrossRef]

Stricker, W.

H. Latzel, A. Rieizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerated four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

Takagi, S.

H. Tanaka, T. Sonehara, S. Takagi, “A new phase-coherent light scattering method: first observation of complex Brillouin spectra,” Phys. Rev. Lett. 79, 881–884 (1997).
[CrossRef]

Tanaka, H.

H. Tanaka, T. Sonehara, S. Takagi, “A new phase-coherent light scattering method: first observation of complex Brillouin spectra,” Phys. Rev. Lett. 79, 881–884 (1997).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, Mass., 1988), Chap. 12.

Trebino, R.

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, Mass., 1988), Chap. 12.

Walker, D. J. W.

Walker, J. S.

J. S. Walker, Fast Fourier Transforms (CRC Press, Boca Raton, Fla., 1996), Chap. 5.

Williams, R. B.

Williams, S.

Yan, Y. X.

Y. X. Yan, L. T. Cheng, K. A. Nelson, “The temperature-dependent distribution of relaxation times in glycerol: time-domain light scattering study of acoustic and mountain-mode behavior in the 20 MHz–3 GHz frequency range,” J. Chem. Phys. 88, 6477–6486 (1988).
[CrossRef]

Zhu, X. R.

X. R. Zhu, D. J. McGraw, J. M. Harris, “Holographic spectroscopy, diffraction from laser-induced gratings,” Anal. Chem. 64, 710A–719A (1992).

Anal. Chem. (1)

X. R. Zhu, D. J. McGraw, J. M. Harris, “Holographic spectroscopy, diffraction from laser-induced gratings,” Anal. Chem. 64, 710A–719A (1992).

Appl. Opt. (6)

Appl. Phys. B (4)

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

D. N. Kozlov, B. Hemmerling, A. Stempanoni-Pananriello, “Measurement of gas jet flow velocities using laser-induced electrostrictive gratings,” Appl. Phys. B 71, 585–591 (2000).
[CrossRef]

H. Latzel, A. Rieizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerated four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

W. Hubschmid, R. Bombach, B. Hemmerling, A. Stampanoni-Panariello, “Sound-velocity measurements in gases by laser-induced electrostrictive gratings,” Appl. Phys. B 62, 103–107 (1996).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal gratings experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
[CrossRef]

Chem. Phys. Lett. (1)

D. E. Govoni, J. A. Booze, A. Sinha, F. F. Crim, “The non-resonant signal in laser-induced grating spectroscopy of gases,” Chem. Phys. Lett. 216, 525–529 (1993).
[CrossRef]

J. Chem. Phys. (1)

Y. X. Yan, L. T. Cheng, K. A. Nelson, “The temperature-dependent distribution of relaxation times in glycerol: time-domain light scattering study of acoustic and mountain-mode behavior in the 20 MHz–3 GHz frequency range,” J. Chem. Phys. 88, 6477–6486 (1988).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Propul. Power (1)

M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environment,” J. Propul. Power 15, 119–127 (1999).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. A (1)

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (1)

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers,” Phys. Rev. E 51, 655–662 (1995).
[CrossRef]

Phys. Rev. Lett. (2)

J. R. Salcedo, A. E. Siegman, D. D. Dlott, M. D. Fayer, “Dynamics of energy transport in molecular crystals: the picosecond transient-grating method,” Phys. Rev. Lett. 41, 131–134 (1978).
[CrossRef]

H. Tanaka, T. Sonehara, S. Takagi, “A new phase-coherent light scattering method: first observation of complex Brillouin spectra,” Phys. Rev. Lett. 79, 881–884 (1997).
[CrossRef]

Other (6)

H. J. Eichler, P. Gunter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

J. H. Keenan, J. Chao, J. Kaye, Gas Tables, International Version (Krieger, Malabar, Fla., 1992).

M. Brown, Innovative Scientific Solutions Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638, and B. Hemmerling, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland (personal communication, 2001).

J. S. Walker, Fast Fourier Transforms (CRC Press, Boca Raton, Fla., 1996), Chap. 5.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, Mass., 1988), Chap. 12.

P. M. Morse, K. U. Ingard, Theoretical Acoustics (Princeton U. Press, Princeton, N.J., 1968), Chap. 13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the breadboard transient-grating optical setup employed. During alignment, 4% of probe beam was picked off and used to trace path of signal beam. PMT, photomultiplier tube.

Fig. 2
Fig. 2

Typical single-shot signal recorded in flowing heated air. The signal was generated through electrostriction under nominal conditions of 689 kPa (1 atm = 101 kPa) and 435 K.

Fig. 3
Fig. 3

Single-shot transient-grating signal recorded in exhaust gases of stoichiometric C2H4-air flame above a laboratory flat-flame burner.

Fig. 4
Fig. 4

Power spectrum for filtered signal shown in Fig. 3 after application of a Gaussian window.

Fig. 5
Fig. 5

Phase-matching vector diagram. In practice, grating wave vector q is determined by the pump-beam intersection. θpr is then dictated by a phase-matching constraint.

Fig. 6
Fig. 6

PDF of the extracted temperatures for a series of 1000 shots taken at 4 Hz. These data were collected in exhaust gas of a stoichiometric ethylene-air flame at 6.4 atm. Solid curve, Gaussian best fit.

Fig. 7
Fig. 7

PDF for temperatures extracted from 160 single-shot measurements in heated air at 659 kPa. A thermocouple reading indicated a temperature of 472 K. The Gaussian fit (470 K) to the PDF is indicated by the curve through the data.

Fig. 8
Fig. 8

PDF for a rich ethylene-air flame. Dotted curve, Gaussian best fit. The large spread in distribution indicates fluctuations in local composition (see text for details).

Fig. 9
Fig. 9

Transient-grating (TGS) signals recorded in air (295 K, 101 kPa) with a Nd:YAG laser (532 nm) for the pump beams in seeded and unseeded operation. Both signals were generated by nonresonant electrostriction.

Fig. 10
Fig. 10

Calculated power spectrum obtained with heterodyne detection. For flow velocities less than the speed of sound, the net velocity peak will appear between Rayleigh and Brillouin peaks. For supersonic flows, this peak will appear at frequency shifts larger than that of the Brillouin peak.

Fig. 11
Fig. 11

Experimental power spectrum taken in a CO2 gas flow. Sequentially acquired heterodyne and homodyne signals are shown. The Brillouin frequency shift corresponds to a local sound speed of 345 m/s. The net velocity feature shift corresponds to a flow speed of 300 m/s.

Tables (2)

Tables Icon

Table 1 Mass-to-Specific-Heat Ratio for Products of Combustion in Air at 1000 K

Tables Icon

Table 2 Mass-to-Specific-Heat Ratio and Speed of Sound for Products of Stoichiometric Decane-Air Combustiona

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Λ=λpump2 sinθpump/2=λprobe2 sinθprobe/2,
θpump=2 tan-1xpump/2r.
Δρt=A exp-Dtq2t+B exp-Dsq2+Q+Aradt+C exp-Γq2t-β2t2cosωBt,
ft  glast  Δρ2t,
Cs=γRTM1/2,
τ=ΛCsn,
T=1τ2Λ2n2Mγ1R.
ΔTT=4δτ2+δΛ2+δm21/2,
ksig=kpr+q, q=kp1+kp2,
ksig=kpr2+q2+2kprq cosα1/2, α=π-θpr.
qθp=2kp2+2kp2cosθp1/2.
ΔΦ=ksig-kpr2+qθp±Δθp2+2kprqθp±Δθpcosπ-θpr±Δθpr1/2L,
A=ΔρG m=1Nexpiϕm,
|A|2=Δρ2G2m=1Nexpiϕm2.
|A|2=Δρ2G2m=1Nexpiϑ2,

Metrics