Abstract

Gordon [Appl. Opt. 42, 542 (2003)] argues that use of external rather than internal mixing when aerosol optical properties are computed will not seriously affect atmospheric correction of ocean color imagery, in spite of the fact that top of the atmosphere reflectances computed with the two approaches differ significantly as shown by Yan et al. [Appl. Opt. 41, 412 (2002)]. We apply an algorithm for simultaneous retrieval of aerosol optical properties and chlorophyll concentrations to demonstrate that use of the internal-mixing approach leads to atmospheric corrections that differ significantly from those obtained with the more realistic external-mixing approach. For relative humidities of 90% or more, the differences in retrieved aerosol optical properties and chlorophyll concentrations, incurred by application of the internal-mixing approach, become unacceptably large.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, “Pitfalls in atmospheric correction of ocean color imagery: how should aerosol optical properties be computed?: comment,” Appl. Opt. 42, 542–547 (2003).
    [CrossRef] [PubMed]
  2. B. Yan, K. Stamnes, W. Li, B. Chen, J. J. Stamnes, S. C. Tsay, “Pitfalls in atmospheric correction of ocean color imagery: how should aerosol optical properties be computed?” Appl. Opt. 41, 412–423 (2002).
    [CrossRef] [PubMed]
  3. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties, AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  4. S.-C. Tsay, G. L. Stephens, “A physical/optical model for atmospheric aerosols with application to visibility problems,” Cooperative Institute for Research in the Atmosphere Rep. ISSN 0737-5352-16 (Colorado State University, Fort Collins, Colo., 1990).
  5. S. R. Hooker, C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000).
    [CrossRef]
  6. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [CrossRef] [PubMed]
  7. M. Wang, S. W. Bailey, C. R. McClain, “SeaWiFS provides unique global aerosol optical property data,” EOS Trans. Am. Geophys. Union 81, 197–202 (2000).
    [CrossRef]
  8. M. Wang, S. W. Bailey, C. M. Pietras, C. R. McClain, SeaWiFS Aerosol Optical Thickness Match-up Analysis, SeaWiFS Postlaunch Technical Report Series, Vol. 10, Validation Analysis, Part 2, Chap. 6, Tech. Memo. 2000-206892 (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  9. K. Stamnes, W. Li, B. Yan, A. Barnard, W. S. Pegau, J. J. Stamnes, “New ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations,” Appl. Opt. (to be published).
  10. W. Li, K. Stamnes, “Inherent optical properties of case I waters: a complete model suitable for use in radiative transfer computations,” J. Geophys. Res., submitted for publication.
  11. K. I. Gjerstad, J. J. Stamnes, B. Hamre, B. Yan, K. Stamnes, “Monte Carlo and discrete ordinate simulations of irradiances in the coupled atmosphere-ocean system,” Appl. Opt., submitted for publication.
  12. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
    [CrossRef]

2003 (1)

2002 (1)

2000 (2)

S. R. Hooker, C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000).
[CrossRef]

M. Wang, S. W. Bailey, C. R. McClain, “SeaWiFS provides unique global aerosol optical property data,” EOS Trans. Am. Geophys. Union 81, 197–202 (2000).
[CrossRef]

1998 (1)

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

1994 (1)

Bailey, S. W.

M. Wang, S. W. Bailey, C. R. McClain, “SeaWiFS provides unique global aerosol optical property data,” EOS Trans. Am. Geophys. Union 81, 197–202 (2000).
[CrossRef]

M. Wang, S. W. Bailey, C. M. Pietras, C. R. McClain, SeaWiFS Aerosol Optical Thickness Match-up Analysis, SeaWiFS Postlaunch Technical Report Series, Vol. 10, Validation Analysis, Part 2, Chap. 6, Tech. Memo. 2000-206892 (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

Barnard, A.

K. Stamnes, W. Li, B. Yan, A. Barnard, W. S. Pegau, J. J. Stamnes, “New ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations,” Appl. Opt. (to be published).

Carder, K. L.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Chen, B.

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties, AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Gjerstad, K. I.

K. I. Gjerstad, J. J. Stamnes, B. Hamre, B. Yan, K. Stamnes, “Monte Carlo and discrete ordinate simulations of irradiances in the coupled atmosphere-ocean system,” Appl. Opt., submitted for publication.

Gordon, H. R.

Hamre, B.

K. I. Gjerstad, J. J. Stamnes, B. Hamre, B. Yan, K. Stamnes, “Monte Carlo and discrete ordinate simulations of irradiances in the coupled atmosphere-ocean system,” Appl. Opt., submitted for publication.

Hooker, S. R.

S. R. Hooker, C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000).
[CrossRef]

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Li, W.

B. Yan, K. Stamnes, W. Li, B. Chen, J. J. Stamnes, S. C. Tsay, “Pitfalls in atmospheric correction of ocean color imagery: how should aerosol optical properties be computed?” Appl. Opt. 41, 412–423 (2002).
[CrossRef] [PubMed]

W. Li, K. Stamnes, “Inherent optical properties of case I waters: a complete model suitable for use in radiative transfer computations,” J. Geophys. Res., submitted for publication.

K. Stamnes, W. Li, B. Yan, A. Barnard, W. S. Pegau, J. J. Stamnes, “New ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations,” Appl. Opt. (to be published).

Maritorena, S.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

McClain, C.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

McClain, C. R.

S. R. Hooker, C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000).
[CrossRef]

M. Wang, S. W. Bailey, C. R. McClain, “SeaWiFS provides unique global aerosol optical property data,” EOS Trans. Am. Geophys. Union 81, 197–202 (2000).
[CrossRef]

M. Wang, S. W. Bailey, C. M. Pietras, C. R. McClain, SeaWiFS Aerosol Optical Thickness Match-up Analysis, SeaWiFS Postlaunch Technical Report Series, Vol. 10, Validation Analysis, Part 2, Chap. 6, Tech. Memo. 2000-206892 (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Pegau, W. S.

K. Stamnes, W. Li, B. Yan, A. Barnard, W. S. Pegau, J. J. Stamnes, “New ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations,” Appl. Opt. (to be published).

Pietras, C. M.

M. Wang, S. W. Bailey, C. M. Pietras, C. R. McClain, SeaWiFS Aerosol Optical Thickness Match-up Analysis, SeaWiFS Postlaunch Technical Report Series, Vol. 10, Validation Analysis, Part 2, Chap. 6, Tech. Memo. 2000-206892 (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties, AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Siegel, D. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Stamnes, J. J.

B. Yan, K. Stamnes, W. Li, B. Chen, J. J. Stamnes, S. C. Tsay, “Pitfalls in atmospheric correction of ocean color imagery: how should aerosol optical properties be computed?” Appl. Opt. 41, 412–423 (2002).
[CrossRef] [PubMed]

K. Stamnes, W. Li, B. Yan, A. Barnard, W. S. Pegau, J. J. Stamnes, “New ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations,” Appl. Opt. (to be published).

K. I. Gjerstad, J. J. Stamnes, B. Hamre, B. Yan, K. Stamnes, “Monte Carlo and discrete ordinate simulations of irradiances in the coupled atmosphere-ocean system,” Appl. Opt., submitted for publication.

Stamnes, K.

B. Yan, K. Stamnes, W. Li, B. Chen, J. J. Stamnes, S. C. Tsay, “Pitfalls in atmospheric correction of ocean color imagery: how should aerosol optical properties be computed?” Appl. Opt. 41, 412–423 (2002).
[CrossRef] [PubMed]

W. Li, K. Stamnes, “Inherent optical properties of case I waters: a complete model suitable for use in radiative transfer computations,” J. Geophys. Res., submitted for publication.

K. I. Gjerstad, J. J. Stamnes, B. Hamre, B. Yan, K. Stamnes, “Monte Carlo and discrete ordinate simulations of irradiances in the coupled atmosphere-ocean system,” Appl. Opt., submitted for publication.

K. Stamnes, W. Li, B. Yan, A. Barnard, W. S. Pegau, J. J. Stamnes, “New ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations,” Appl. Opt. (to be published).

Stephens, G. L.

S.-C. Tsay, G. L. Stephens, “A physical/optical model for atmospheric aerosols with application to visibility problems,” Cooperative Institute for Research in the Atmosphere Rep. ISSN 0737-5352-16 (Colorado State University, Fort Collins, Colo., 1990).

Tsay, S. C.

Tsay, S.-C.

S.-C. Tsay, G. L. Stephens, “A physical/optical model for atmospheric aerosols with application to visibility problems,” Cooperative Institute for Research in the Atmosphere Rep. ISSN 0737-5352-16 (Colorado State University, Fort Collins, Colo., 1990).

Wang, M.

M. Wang, S. W. Bailey, C. R. McClain, “SeaWiFS provides unique global aerosol optical property data,” EOS Trans. Am. Geophys. Union 81, 197–202 (2000).
[CrossRef]

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef] [PubMed]

M. Wang, S. W. Bailey, C. M. Pietras, C. R. McClain, SeaWiFS Aerosol Optical Thickness Match-up Analysis, SeaWiFS Postlaunch Technical Report Series, Vol. 10, Validation Analysis, Part 2, Chap. 6, Tech. Memo. 2000-206892 (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

Yan, B.

B. Yan, K. Stamnes, W. Li, B. Chen, J. J. Stamnes, S. C. Tsay, “Pitfalls in atmospheric correction of ocean color imagery: how should aerosol optical properties be computed?” Appl. Opt. 41, 412–423 (2002).
[CrossRef] [PubMed]

K. I. Gjerstad, J. J. Stamnes, B. Hamre, B. Yan, K. Stamnes, “Monte Carlo and discrete ordinate simulations of irradiances in the coupled atmosphere-ocean system,” Appl. Opt., submitted for publication.

K. Stamnes, W. Li, B. Yan, A. Barnard, W. S. Pegau, J. J. Stamnes, “New ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations,” Appl. Opt. (to be published).

Appl. Opt. (3)

EOS Trans. Am. Geophys. Union (1)

M. Wang, S. W. Bailey, C. R. McClain, “SeaWiFS provides unique global aerosol optical property data,” EOS Trans. Am. Geophys. Union 81, 197–202 (2000).
[CrossRef]

J. Geophys. Res. (1)

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Prog. Oceanogr. (1)

S. R. Hooker, C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000).
[CrossRef]

Other (6)

M. Wang, S. W. Bailey, C. M. Pietras, C. R. McClain, SeaWiFS Aerosol Optical Thickness Match-up Analysis, SeaWiFS Postlaunch Technical Report Series, Vol. 10, Validation Analysis, Part 2, Chap. 6, Tech. Memo. 2000-206892 (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

K. Stamnes, W. Li, B. Yan, A. Barnard, W. S. Pegau, J. J. Stamnes, “New ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations,” Appl. Opt. (to be published).

W. Li, K. Stamnes, “Inherent optical properties of case I waters: a complete model suitable for use in radiative transfer computations,” J. Geophys. Res., submitted for publication.

K. I. Gjerstad, J. J. Stamnes, B. Hamre, B. Yan, K. Stamnes, “Monte Carlo and discrete ordinate simulations of irradiances in the coupled atmosphere-ocean system,” Appl. Opt., submitted for publication.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties, AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

S.-C. Tsay, G. L. Stephens, “A physical/optical model for atmospheric aerosols with application to visibility problems,” Cooperative Institute for Research in the Atmosphere Rep. ISSN 0737-5352-16 (Colorado State University, Fort Collins, Colo., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of retrieved aerosol optical depths and chlorophyll concentrations with input data. The maritime aerosol model with 50% RH was used to compute aerosol optical properties. The left panels show results based on aerosol optical properties computed with the SC approach, whereas the right panels pertain to the MC approach. Triangles, Sun-sensor geometry: θ0 = 54.4°, θ = 25.60°, Δϕ = 56.0°; squares, Sun-sensor geometry: θ0 = 54.4°, θ = 68.03, Δϕ = 56.0.

Fig. 2
Fig. 2

Comparison of retrieved aerosol optical depths and chlorophyll concentrations with input data. Same as Fig. 1 except that the maritime aerosol model with 99% RH was used to compute aerosol optical properties.

Fig. 3
Fig. 3

Comparison of retrieved aerosol optical depths and chlorophyll concentrations with input data. Same as Fig. 1 except that the tropospheric aerosol model with 50% RH was used to compute aerosol optical properties.

Fig. 4
Fig. 4

Comparison of retrieved aerosol optical depths and chlorophyll concentrations with input data. Same as Fig. 1 except that the tropospheric aerosol model with 99% RH was used to compute aerosol optical properties.

Metrics