Abstract

We advance a method to determine the diameter D and the complex refractive index (n + n′ i) of marine particles from flow cytometric measurements of forward scattering, side scattering, and chlorophyll fluorescence combined with Mie theory. To understand better the application of Mie theory with its assumptions to flow cytometry (FCM) measurements of phytoplankton cells, we evaluate our flow cytometric-Mie (FCM-Mie) method by comparing results from a variety of phytoplankton cultures with independent estimates of cell D and with estimates of n and n′ from the inversion of bulk measurements. Cell D initially estimated from the FCM-Mie method is lower than independent estimates, and n and n′ are generally higher than bulk estimates. These differences reflect lower forward scattering and higher side scattering for single-cell measurements than predicted by Mie theory. The application of empirical scattering corrections improves FCM-Mie estimates of cell size, n, and n′; notably size is determined accurately for cells grown in both high- and low-light conditions, and n′ is correlated with intracellular chlorophyll concentration. A comparison of results for phytoplankton and mineral particles suggests that differences in n between these particle types can be determined from FCM measurements. In application to natural mixtures of particles, eukaryotic pico/nanophytoplankton and Synechococcus have minimum mean values of n′ in surface waters, and nonphytoplankton particles have higher values of n than phytoplankton at all depths.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  2. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, New York, 1983).
  3. M. R. Lewis, J. J. Cullen, “From cells to the ocean: satellite ocean color,” in Particle Analysis in Oceanography, S. Demers, ed. (Springer-Verlag, New York, 1991), pp. 325–337.
    [CrossRef]
  4. D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
    [CrossRef]
  5. R. J. Olson, E. R. Zettler, M. D. DuRand, “Phytoplankton analysis using flow cytometry,” in Aquatic Microbial Ecology, P. F. Kemp, B. F. Shen, E. B. Shen, J. J. Cole, eds. (Lewis Publishers, Boca Raton, Fla., 1993), pp. 175–186.
  6. D. Marie, F. Partensky, S. Jacquet, D. Vaulot, “Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I,” Appl. Environ. Microbiol. 63, 186–193 (1997).
    [PubMed]
  7. R. J. Olson, E. R. Zettler, O. K. Anderson, “Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry,” Cytometry 10, 636–643 (1989).
    [CrossRef] [PubMed]
  8. M. D. DuRand, “Phytoplankton growth and diel variations in beam attenuation through individual cell analysis,” Ph.D. dissertation (Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, Woods Hole, Mass., 1995).
  9. K. Y. H. Gin, S. W. Chisholm, R. J. Olson, “Seasonal and depth variation in microbial size spectra at the Bermuda Atlantic time series station,” Deep-Sea Res. I 46, 1221–1245 (1999).
    [CrossRef]
  10. K. K. Cavender-Bares, “Size distributions, population dynamics, and single-cell properties of marine plankton in diverse nutrient environments,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1999).
  11. R. K. Y. Chan, K. M. Un, “Real-time size distribution, concentration, and biomass measurement of marine phytoplankton with a novel dual-beam laser fluorescence Doppler cytometer,” Appl. Opt. 40, 2956–2965 (2001).
    [CrossRef]
  12. S. G. Ackleson, R. W. Spinrad, “Size and refractive index of individual marine particulates: a flow cytometric approach,” Appl. Opt. 27, 1270–1277 (1988).
    [CrossRef] [PubMed]
  13. C. D. Mobley, Light and Water; Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  14. M. J. Perry, S. M. Porter, “Determination of the cross-section absorption coefficient of individual phytoplankton cells by analytical flow cytometry,” Limnol. Oceanogr. 34, 1727–1738 (1989).
    [CrossRef]
  15. A. Bricaud, A. L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
    [CrossRef]
  16. M. D. DuRand, R. J. Olson, “Diel patterns in optical properties of the chlorophyte Nannochloris sp.: relating the individual cell to bulk measurements,” Limnol. Oceanogr. 43, 1107–1118 (1998).
    [CrossRef]
  17. H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Warts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
    [CrossRef]
  18. S. G. Ackleson, D. B. Robins, J. A. Stephens, “Distributions in phytoplankton refractive index and size within the North Sea,” in Ocean Optics IX, S. G. Ackleson, ed., Proc. SPIE925, 317–325 (1988).
    [CrossRef]
  19. W. S. Pegau, D. Gray, J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997).
    [CrossRef] [PubMed]
  20. R. A. Reynolds, D. Stramski, D. A. Kiefer, “The effect of nitrogen limitation on the absorption and scattering properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 42, 881–892 (1997).
    [CrossRef]
  21. D. Stramski, R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38, 1347–1364 (1993).
    [CrossRef]
  22. S. W. Jeffrey, N. A. Welschmeyer, “Spectrophotometric and fluorometric equations in common use in oceanography,” in Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO, Paris, 1997), pp. 597–615.
  23. S. W. Wright, S. W. Jeffrey, R. F. C. Mantoura, “Evaluation of methods and solvents for pigment extraction,” in Phytoplankton Pigments in Oceanography, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO, Paris, 1997), pp. 261–282.
  24. A. Shalapyonok, R. J. Olson, L. S. Shalapyonok, “Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry,” Deep-Sea Res. II 48, 1231–1262 (2001).
    [CrossRef]
  25. M. D. DuRand, R. E. Green, H. M. Sosik, R. J. Olson, “Diel variations in optical properties of Micromonas pusilla (Prasinophyceae),” J. Phycol. 38, 1132–1142 (2002).
    [CrossRef]
  26. R. R. L. Guillard, “Culture of phytoplankton for feeding marine invertebrates,” in Culture of Marine Invertebrate Animals, W. L. Smith, M. H. Chanely, eds. (Plenum, New York, 1975), pp. 29–60.
    [CrossRef]
  27. T. D. Dickey, A. J. Williams, “Interdisciplinary ocean process studies on the New England shelf,” J. Geophys. Res. 106, 9427–9434 (2001).
    [CrossRef]
  28. H. M. Sosik, R. E. Green, W. S. Pegau, C. S. Roesler, “Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring,” J. Geophys. Res. 106, 9455–9472 (2001).
    [CrossRef]
  29. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  30. A. Bricaud, A. Morel, “Light attenuation and scattering by phytoplankton cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986).
    [CrossRef]
  31. C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  32. D. Stramski, “Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content,” Deep-Sea Res. I 46, 335–351 (1999).
    [CrossRef]
  33. S. G. Ackleson, D. B. Robins, “Flow cytometric determinations of North Sea phytoplankton optical properties,” Netherlands J. Sea Res. 25, 11–18 (1990).
    [CrossRef]
  34. M. D. DuRand, R. J. Olson, S. W. Chisholm, “Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea,” Deep-Sea Res. II 48, 1983–2003 (2001).
    [CrossRef]
  35. R. J. Olson, S. W. Chisholm, E. R. Zettler, M. A. Altabet, J. A. Dusenberry, “Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean,” Deep-Sea Res. 37, 1033–1051 (1990).
    [CrossRef]
  36. M. S. Twardowski, E. Bass, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
    [CrossRef]
  37. R. P. Bukata, J. H. Jerome, K. Y. Kondryatev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).
  38. B. G. Mitchell, D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. 35, 639–663 (1988).
    [CrossRef]
  39. H. M. Sosik, S. W. Chisholm, R. J. Olson, “Chlorophyll fluorescence from single cells: interpretation of flow cytometric signals,” Limnol. Oceanogr. 34, 1749–1761 (1989).
    [CrossRef]
  40. H. M. Sosik, B. G. Mitchell, “Absorption, fluorescence and quantum yield for growth in nitrogen limited Dunaliella tertiolecta,” Limnol. Oceanogr. 36 (5), 910–921 (1991).
    [CrossRef]
  41. K. Witkowski, T. Krol, M. Lotocka, “The light scattering matrix of Chlorella vulgaris cells and its variability due to cell modification,” Oceanologia 36, 19–31 (1994).
  42. K. Witkowski, T. Król, A. Zieliński, E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
    [CrossRef]

2002

M. D. DuRand, R. E. Green, H. M. Sosik, R. J. Olson, “Diel variations in optical properties of Micromonas pusilla (Prasinophyceae),” J. Phycol. 38, 1132–1142 (2002).
[CrossRef]

2001

T. D. Dickey, A. J. Williams, “Interdisciplinary ocean process studies on the New England shelf,” J. Geophys. Res. 106, 9427–9434 (2001).
[CrossRef]

H. M. Sosik, R. E. Green, W. S. Pegau, C. S. Roesler, “Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring,” J. Geophys. Res. 106, 9455–9472 (2001).
[CrossRef]

D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

R. K. Y. Chan, K. M. Un, “Real-time size distribution, concentration, and biomass measurement of marine phytoplankton with a novel dual-beam laser fluorescence Doppler cytometer,” Appl. Opt. 40, 2956–2965 (2001).
[CrossRef]

M. D. DuRand, R. J. Olson, S. W. Chisholm, “Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea,” Deep-Sea Res. II 48, 1983–2003 (2001).
[CrossRef]

M. S. Twardowski, E. Bass, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

A. Shalapyonok, R. J. Olson, L. S. Shalapyonok, “Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry,” Deep-Sea Res. II 48, 1231–1262 (2001).
[CrossRef]

1999

D. Stramski, “Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content,” Deep-Sea Res. I 46, 335–351 (1999).
[CrossRef]

K. Y. H. Gin, S. W. Chisholm, R. J. Olson, “Seasonal and depth variation in microbial size spectra at the Bermuda Atlantic time series station,” Deep-Sea Res. I 46, 1221–1245 (1999).
[CrossRef]

1998

M. D. DuRand, R. J. Olson, “Diel patterns in optical properties of the chlorophyte Nannochloris sp.: relating the individual cell to bulk measurements,” Limnol. Oceanogr. 43, 1107–1118 (1998).
[CrossRef]

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Warts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

K. Witkowski, T. Król, A. Zieliński, E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
[CrossRef]

1997

W. S. Pegau, D. Gray, J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997).
[CrossRef] [PubMed]

R. A. Reynolds, D. Stramski, D. A. Kiefer, “The effect of nitrogen limitation on the absorption and scattering properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 42, 881–892 (1997).
[CrossRef]

D. Marie, F. Partensky, S. Jacquet, D. Vaulot, “Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I,” Appl. Environ. Microbiol. 63, 186–193 (1997).
[PubMed]

1994

K. Witkowski, T. Krol, M. Lotocka, “The light scattering matrix of Chlorella vulgaris cells and its variability due to cell modification,” Oceanologia 36, 19–31 (1994).

1993

D. Stramski, R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38, 1347–1364 (1993).
[CrossRef]

1991

H. M. Sosik, B. G. Mitchell, “Absorption, fluorescence and quantum yield for growth in nitrogen limited Dunaliella tertiolecta,” Limnol. Oceanogr. 36 (5), 910–921 (1991).
[CrossRef]

1990

S. G. Ackleson, D. B. Robins, “Flow cytometric determinations of North Sea phytoplankton optical properties,” Netherlands J. Sea Res. 25, 11–18 (1990).
[CrossRef]

R. J. Olson, S. W. Chisholm, E. R. Zettler, M. A. Altabet, J. A. Dusenberry, “Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean,” Deep-Sea Res. 37, 1033–1051 (1990).
[CrossRef]

1989

H. M. Sosik, S. W. Chisholm, R. J. Olson, “Chlorophyll fluorescence from single cells: interpretation of flow cytometric signals,” Limnol. Oceanogr. 34, 1749–1761 (1989).
[CrossRef]

R. J. Olson, E. R. Zettler, O. K. Anderson, “Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry,” Cytometry 10, 636–643 (1989).
[CrossRef] [PubMed]

M. J. Perry, S. M. Porter, “Determination of the cross-section absorption coefficient of individual phytoplankton cells by analytical flow cytometry,” Limnol. Oceanogr. 34, 1727–1738 (1989).
[CrossRef]

1988

A. Bricaud, A. L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

S. G. Ackleson, R. W. Spinrad, “Size and refractive index of individual marine particulates: a flow cytometric approach,” Appl. Opt. 27, 1270–1277 (1988).
[CrossRef] [PubMed]

B. G. Mitchell, D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. 35, 639–663 (1988).
[CrossRef]

1986

1977

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Ackleson, S. G.

S. G. Ackleson, D. B. Robins, “Flow cytometric determinations of North Sea phytoplankton optical properties,” Netherlands J. Sea Res. 25, 11–18 (1990).
[CrossRef]

S. G. Ackleson, R. W. Spinrad, “Size and refractive index of individual marine particulates: a flow cytometric approach,” Appl. Opt. 27, 1270–1277 (1988).
[CrossRef] [PubMed]

S. G. Ackleson, D. B. Robins, J. A. Stephens, “Distributions in phytoplankton refractive index and size within the North Sea,” in Ocean Optics IX, S. G. Ackleson, ed., Proc. SPIE925, 317–325 (1988).
[CrossRef]

Altabet, M. A.

R. J. Olson, S. W. Chisholm, E. R. Zettler, M. A. Altabet, J. A. Dusenberry, “Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean,” Deep-Sea Res. 37, 1033–1051 (1990).
[CrossRef]

Anderson, O. K.

R. J. Olson, E. R. Zettler, O. K. Anderson, “Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry,” Cytometry 10, 636–643 (1989).
[CrossRef] [PubMed]

Barnard, A. H.

M. S. Twardowski, E. Bass, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Bass, E.

M. S. Twardowski, E. Bass, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Bedhomme, A. L.

A. Bricaud, A. L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bricaud, A.

Bukata, R. P.

R. P. Bukata, J. H. Jerome, K. Y. Kondryatev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).

Cavender-Bares, K. K.

K. K. Cavender-Bares, “Size distributions, population dynamics, and single-cell properties of marine plankton in diverse nutrient environments,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1999).

Chan, R. K. Y.

Charlton, F.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Warts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Chisholm, S. W.

M. D. DuRand, R. J. Olson, S. W. Chisholm, “Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea,” Deep-Sea Res. II 48, 1983–2003 (2001).
[CrossRef]

K. Y. H. Gin, S. W. Chisholm, R. J. Olson, “Seasonal and depth variation in microbial size spectra at the Bermuda Atlantic time series station,” Deep-Sea Res. I 46, 1221–1245 (1999).
[CrossRef]

R. J. Olson, S. W. Chisholm, E. R. Zettler, M. A. Altabet, J. A. Dusenberry, “Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean,” Deep-Sea Res. 37, 1033–1051 (1990).
[CrossRef]

H. M. Sosik, S. W. Chisholm, R. J. Olson, “Chlorophyll fluorescence from single cells: interpretation of flow cytometric signals,” Limnol. Oceanogr. 34, 1749–1761 (1989).
[CrossRef]

Cullen, J. J.

M. R. Lewis, J. J. Cullen, “From cells to the ocean: satellite ocean color,” in Particle Analysis in Oceanography, S. Demers, ed. (Springer-Verlag, New York, 1991), pp. 325–337.
[CrossRef]

de Haan, J. F.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Warts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Dekker, A. G.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Warts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Dickey, T. D.

T. D. Dickey, A. J. Williams, “Interdisciplinary ocean process studies on the New England shelf,” J. Geophys. Res. 106, 9427–9434 (2001).
[CrossRef]

DuRand, M. D.

M. D. DuRand, R. E. Green, H. M. Sosik, R. J. Olson, “Diel variations in optical properties of Micromonas pusilla (Prasinophyceae),” J. Phycol. 38, 1132–1142 (2002).
[CrossRef]

M. D. DuRand, R. J. Olson, S. W. Chisholm, “Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea,” Deep-Sea Res. II 48, 1983–2003 (2001).
[CrossRef]

M. D. DuRand, R. J. Olson, “Diel patterns in optical properties of the chlorophyte Nannochloris sp.: relating the individual cell to bulk measurements,” Limnol. Oceanogr. 43, 1107–1118 (1998).
[CrossRef]

M. D. DuRand, “Phytoplankton growth and diel variations in beam attenuation through individual cell analysis,” Ph.D. dissertation (Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, Woods Hole, Mass., 1995).

R. J. Olson, E. R. Zettler, M. D. DuRand, “Phytoplankton analysis using flow cytometry,” in Aquatic Microbial Ecology, P. F. Kemp, B. F. Shen, E. B. Shen, J. J. Cole, eds. (Lewis Publishers, Boca Raton, Fla., 1993), pp. 175–186.

Dusenberry, J. A.

R. J. Olson, S. W. Chisholm, E. R. Zettler, M. A. Altabet, J. A. Dusenberry, “Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean,” Deep-Sea Res. 37, 1033–1051 (1990).
[CrossRef]

Gin, K. Y. H.

K. Y. H. Gin, S. W. Chisholm, R. J. Olson, “Seasonal and depth variation in microbial size spectra at the Bermuda Atlantic time series station,” Deep-Sea Res. I 46, 1221–1245 (1999).
[CrossRef]

Gray, D.

Green, R. E.

M. D. DuRand, R. E. Green, H. M. Sosik, R. J. Olson, “Diel variations in optical properties of Micromonas pusilla (Prasinophyceae),” J. Phycol. 38, 1132–1142 (2002).
[CrossRef]

H. M. Sosik, R. E. Green, W. S. Pegau, C. S. Roesler, “Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring,” J. Geophys. Res. 106, 9455–9472 (2001).
[CrossRef]

Guillard, R. R. L.

R. R. L. Guillard, “Culture of phytoplankton for feeding marine invertebrates,” in Culture of Marine Invertebrate Animals, W. L. Smith, M. H. Chanely, eds. (Plenum, New York, 1975), pp. 29–60.
[CrossRef]

Hoffman, D. R.

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Hoogenboom, H. J.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Warts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Hovenier, J. W.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Warts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Jacquet, S.

D. Marie, F. Partensky, S. Jacquet, D. Vaulot, “Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I,” Appl. Environ. Microbiol. 63, 186–193 (1997).
[PubMed]

Jeffrey, S. W.

S. W. Jeffrey, N. A. Welschmeyer, “Spectrophotometric and fluorometric equations in common use in oceanography,” in Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO, Paris, 1997), pp. 597–615.

S. W. Wright, S. W. Jeffrey, R. F. C. Mantoura, “Evaluation of methods and solvents for pigment extraction,” in Phytoplankton Pigments in Oceanography, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO, Paris, 1997), pp. 261–282.

Jerome, J. H.

R. P. Bukata, J. H. Jerome, K. Y. Kondryatev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).

Kiefer, D. A.

R. A. Reynolds, D. Stramski, D. A. Kiefer, “The effect of nitrogen limitation on the absorption and scattering properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 42, 881–892 (1997).
[CrossRef]

B. G. Mitchell, D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. 35, 639–663 (1988).
[CrossRef]

Kirk, J. T. O.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, New York, 1983).

Kondryatev, K. Y.

R. P. Bukata, J. H. Jerome, K. Y. Kondryatev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).

Krol, T.

K. Witkowski, T. Krol, M. Lotocka, “The light scattering matrix of Chlorella vulgaris cells and its variability due to cell modification,” Oceanologia 36, 19–31 (1994).

Król, T.

K. Witkowski, T. Król, A. Zieliński, E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
[CrossRef]

Kuten, E.

K. Witkowski, T. Król, A. Zieliński, E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
[CrossRef]

Lewis, M. R.

M. R. Lewis, J. J. Cullen, “From cells to the ocean: satellite ocean color,” in Particle Analysis in Oceanography, S. Demers, ed. (Springer-Verlag, New York, 1991), pp. 325–337.
[CrossRef]

Lotocka, M.

K. Witkowski, T. Krol, M. Lotocka, “The light scattering matrix of Chlorella vulgaris cells and its variability due to cell modification,” Oceanologia 36, 19–31 (1994).

Macdonald, J. B.

M. S. Twardowski, E. Bass, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Mantoura, R. F. C.

S. W. Wright, S. W. Jeffrey, R. F. C. Mantoura, “Evaluation of methods and solvents for pigment extraction,” in Phytoplankton Pigments in Oceanography, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO, Paris, 1997), pp. 261–282.

Marie, D.

D. Marie, F. Partensky, S. Jacquet, D. Vaulot, “Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I,” Appl. Environ. Microbiol. 63, 186–193 (1997).
[PubMed]

Mitchell, B. G.

H. M. Sosik, B. G. Mitchell, “Absorption, fluorescence and quantum yield for growth in nitrogen limited Dunaliella tertiolecta,” Limnol. Oceanogr. 36 (5), 910–921 (1991).
[CrossRef]

B. G. Mitchell, D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. 35, 639–663 (1988).
[CrossRef]

Mobley, C. D.

C. D. Mobley, Light and Water; Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).

Morel, A.

D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

A. Bricaud, A. L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

A. Bricaud, A. Morel, “Light attenuation and scattering by phytoplankton cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Olson, R. J.

M. D. DuRand, R. E. Green, H. M. Sosik, R. J. Olson, “Diel variations in optical properties of Micromonas pusilla (Prasinophyceae),” J. Phycol. 38, 1132–1142 (2002).
[CrossRef]

A. Shalapyonok, R. J. Olson, L. S. Shalapyonok, “Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry,” Deep-Sea Res. II 48, 1231–1262 (2001).
[CrossRef]

M. D. DuRand, R. J. Olson, S. W. Chisholm, “Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea,” Deep-Sea Res. II 48, 1983–2003 (2001).
[CrossRef]

K. Y. H. Gin, S. W. Chisholm, R. J. Olson, “Seasonal and depth variation in microbial size spectra at the Bermuda Atlantic time series station,” Deep-Sea Res. I 46, 1221–1245 (1999).
[CrossRef]

M. D. DuRand, R. J. Olson, “Diel patterns in optical properties of the chlorophyte Nannochloris sp.: relating the individual cell to bulk measurements,” Limnol. Oceanogr. 43, 1107–1118 (1998).
[CrossRef]

R. J. Olson, S. W. Chisholm, E. R. Zettler, M. A. Altabet, J. A. Dusenberry, “Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean,” Deep-Sea Res. 37, 1033–1051 (1990).
[CrossRef]

H. M. Sosik, S. W. Chisholm, R. J. Olson, “Chlorophyll fluorescence from single cells: interpretation of flow cytometric signals,” Limnol. Oceanogr. 34, 1749–1761 (1989).
[CrossRef]

R. J. Olson, E. R. Zettler, O. K. Anderson, “Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry,” Cytometry 10, 636–643 (1989).
[CrossRef] [PubMed]

R. J. Olson, E. R. Zettler, M. D. DuRand, “Phytoplankton analysis using flow cytometry,” in Aquatic Microbial Ecology, P. F. Kemp, B. F. Shen, E. B. Shen, J. J. Cole, eds. (Lewis Publishers, Boca Raton, Fla., 1993), pp. 175–186.

Partensky, F.

D. Marie, F. Partensky, S. Jacquet, D. Vaulot, “Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I,” Appl. Environ. Microbiol. 63, 186–193 (1997).
[PubMed]

Pegau, W. S.

H. M. Sosik, R. E. Green, W. S. Pegau, C. S. Roesler, “Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring,” J. Geophys. Res. 106, 9455–9472 (2001).
[CrossRef]

M. S. Twardowski, E. Bass, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

W. S. Pegau, D. Gray, J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997).
[CrossRef] [PubMed]

Perry, M. J.

M. J. Perry, S. M. Porter, “Determination of the cross-section absorption coefficient of individual phytoplankton cells by analytical flow cytometry,” Limnol. Oceanogr. 34, 1727–1738 (1989).
[CrossRef]

Porter, S. M.

M. J. Perry, S. M. Porter, “Determination of the cross-section absorption coefficient of individual phytoplankton cells by analytical flow cytometry,” Limnol. Oceanogr. 34, 1727–1738 (1989).
[CrossRef]

Pozdnyakov, D. V.

R. P. Bukata, J. H. Jerome, K. Y. Kondryatev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).

Prieur, L.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Reynolds, R. A.

R. A. Reynolds, D. Stramski, D. A. Kiefer, “The effect of nitrogen limitation on the absorption and scattering properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 42, 881–892 (1997).
[CrossRef]

D. Stramski, R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38, 1347–1364 (1993).
[CrossRef]

Robins, D. B.

S. G. Ackleson, D. B. Robins, “Flow cytometric determinations of North Sea phytoplankton optical properties,” Netherlands J. Sea Res. 25, 11–18 (1990).
[CrossRef]

S. G. Ackleson, D. B. Robins, J. A. Stephens, “Distributions in phytoplankton refractive index and size within the North Sea,” in Ocean Optics IX, S. G. Ackleson, ed., Proc. SPIE925, 317–325 (1988).
[CrossRef]

Roesler, C. S.

H. M. Sosik, R. E. Green, W. S. Pegau, C. S. Roesler, “Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring,” J. Geophys. Res. 106, 9455–9472 (2001).
[CrossRef]

Schreurs, R.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Warts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Shalapyonok, A.

A. Shalapyonok, R. J. Olson, L. S. Shalapyonok, “Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry,” Deep-Sea Res. II 48, 1231–1262 (2001).
[CrossRef]

Shalapyonok, L. S.

A. Shalapyonok, R. J. Olson, L. S. Shalapyonok, “Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry,” Deep-Sea Res. II 48, 1231–1262 (2001).
[CrossRef]

Sosik, H. M.

M. D. DuRand, R. E. Green, H. M. Sosik, R. J. Olson, “Diel variations in optical properties of Micromonas pusilla (Prasinophyceae),” J. Phycol. 38, 1132–1142 (2002).
[CrossRef]

H. M. Sosik, R. E. Green, W. S. Pegau, C. S. Roesler, “Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring,” J. Geophys. Res. 106, 9455–9472 (2001).
[CrossRef]

H. M. Sosik, B. G. Mitchell, “Absorption, fluorescence and quantum yield for growth in nitrogen limited Dunaliella tertiolecta,” Limnol. Oceanogr. 36 (5), 910–921 (1991).
[CrossRef]

H. M. Sosik, S. W. Chisholm, R. J. Olson, “Chlorophyll fluorescence from single cells: interpretation of flow cytometric signals,” Limnol. Oceanogr. 34, 1749–1761 (1989).
[CrossRef]

Spinrad, R. W.

Stephens, J. A.

S. G. Ackleson, D. B. Robins, J. A. Stephens, “Distributions in phytoplankton refractive index and size within the North Sea,” in Ocean Optics IX, S. G. Ackleson, ed., Proc. SPIE925, 317–325 (1988).
[CrossRef]

Stramski, D.

D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

D. Stramski, “Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content,” Deep-Sea Res. I 46, 335–351 (1999).
[CrossRef]

R. A. Reynolds, D. Stramski, D. A. Kiefer, “The effect of nitrogen limitation on the absorption and scattering properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 42, 881–892 (1997).
[CrossRef]

D. Stramski, R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38, 1347–1364 (1993).
[CrossRef]

Twardowski, M. S.

M. S. Twardowski, E. Bass, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Un, K. M.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Vassen, W.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Warts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Vaulot, D.

D. Marie, F. Partensky, S. Jacquet, D. Vaulot, “Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I,” Appl. Environ. Microbiol. 63, 186–193 (1997).
[PubMed]

Volten, H.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Warts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Warts, R.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Warts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Welschmeyer, N. A.

S. W. Jeffrey, N. A. Welschmeyer, “Spectrophotometric and fluorometric equations in common use in oceanography,” in Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO, Paris, 1997), pp. 597–615.

Williams, A. J.

T. D. Dickey, A. J. Williams, “Interdisciplinary ocean process studies on the New England shelf,” J. Geophys. Res. 106, 9427–9434 (2001).
[CrossRef]

Witkowski, K.

K. Witkowski, T. Król, A. Zieliński, E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
[CrossRef]

K. Witkowski, T. Krol, M. Lotocka, “The light scattering matrix of Chlorella vulgaris cells and its variability due to cell modification,” Oceanologia 36, 19–31 (1994).

Wright, S. W.

S. W. Wright, S. W. Jeffrey, R. F. C. Mantoura, “Evaluation of methods and solvents for pigment extraction,” in Phytoplankton Pigments in Oceanography, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO, Paris, 1997), pp. 261–282.

Zaneveld, J. R.

M. S. Twardowski, E. Bass, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Zaneveld, J. R. V.

Zettler, E. R.

R. J. Olson, S. W. Chisholm, E. R. Zettler, M. A. Altabet, J. A. Dusenberry, “Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean,” Deep-Sea Res. 37, 1033–1051 (1990).
[CrossRef]

R. J. Olson, E. R. Zettler, O. K. Anderson, “Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry,” Cytometry 10, 636–643 (1989).
[CrossRef] [PubMed]

R. J. Olson, E. R. Zettler, M. D. DuRand, “Phytoplankton analysis using flow cytometry,” in Aquatic Microbial Ecology, P. F. Kemp, B. F. Shen, E. B. Shen, J. J. Cole, eds. (Lewis Publishers, Boca Raton, Fla., 1993), pp. 175–186.

Zielinski, A.

K. Witkowski, T. Król, A. Zieliński, E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
[CrossRef]

Appl. Environ. Microbiol.

D. Marie, F. Partensky, S. Jacquet, D. Vaulot, “Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I,” Appl. Environ. Microbiol. 63, 186–193 (1997).
[PubMed]

Appl. Opt.

Cytometry

R. J. Olson, E. R. Zettler, O. K. Anderson, “Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry,” Cytometry 10, 636–643 (1989).
[CrossRef] [PubMed]

Deep-Sea Res.

B. G. Mitchell, D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. 35, 639–663 (1988).
[CrossRef]

R. J. Olson, S. W. Chisholm, E. R. Zettler, M. A. Altabet, J. A. Dusenberry, “Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean,” Deep-Sea Res. 37, 1033–1051 (1990).
[CrossRef]

Deep-Sea Res. I

D. Stramski, “Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content,” Deep-Sea Res. I 46, 335–351 (1999).
[CrossRef]

K. Y. H. Gin, S. W. Chisholm, R. J. Olson, “Seasonal and depth variation in microbial size spectra at the Bermuda Atlantic time series station,” Deep-Sea Res. I 46, 1221–1245 (1999).
[CrossRef]

Deep-Sea Res. II

M. D. DuRand, R. J. Olson, S. W. Chisholm, “Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea,” Deep-Sea Res. II 48, 1983–2003 (2001).
[CrossRef]

A. Shalapyonok, R. J. Olson, L. S. Shalapyonok, “Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry,” Deep-Sea Res. II 48, 1231–1262 (2001).
[CrossRef]

J. Geophys. Res.

T. D. Dickey, A. J. Williams, “Interdisciplinary ocean process studies on the New England shelf,” J. Geophys. Res. 106, 9427–9434 (2001).
[CrossRef]

H. M. Sosik, R. E. Green, W. S. Pegau, C. S. Roesler, “Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring,” J. Geophys. Res. 106, 9455–9472 (2001).
[CrossRef]

M. S. Twardowski, E. Bass, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

J. Phycol.

M. D. DuRand, R. E. Green, H. M. Sosik, R. J. Olson, “Diel variations in optical properties of Micromonas pusilla (Prasinophyceae),” J. Phycol. 38, 1132–1142 (2002).
[CrossRef]

J. Plankton Res.

A. Bricaud, A. L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

Limnol. Oceanogr.

M. D. DuRand, R. J. Olson, “Diel patterns in optical properties of the chlorophyte Nannochloris sp.: relating the individual cell to bulk measurements,” Limnol. Oceanogr. 43, 1107–1118 (1998).
[CrossRef]

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Warts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

R. A. Reynolds, D. Stramski, D. A. Kiefer, “The effect of nitrogen limitation on the absorption and scattering properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 42, 881–892 (1997).
[CrossRef]

D. Stramski, R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38, 1347–1364 (1993).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

M. J. Perry, S. M. Porter, “Determination of the cross-section absorption coefficient of individual phytoplankton cells by analytical flow cytometry,” Limnol. Oceanogr. 34, 1727–1738 (1989).
[CrossRef]

H. M. Sosik, S. W. Chisholm, R. J. Olson, “Chlorophyll fluorescence from single cells: interpretation of flow cytometric signals,” Limnol. Oceanogr. 34, 1749–1761 (1989).
[CrossRef]

H. M. Sosik, B. G. Mitchell, “Absorption, fluorescence and quantum yield for growth in nitrogen limited Dunaliella tertiolecta,” Limnol. Oceanogr. 36 (5), 910–921 (1991).
[CrossRef]

K. Witkowski, T. Król, A. Zieliński, E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
[CrossRef]

Netherlands J. Sea Res.

S. G. Ackleson, D. B. Robins, “Flow cytometric determinations of North Sea phytoplankton optical properties,” Netherlands J. Sea Res. 25, 11–18 (1990).
[CrossRef]

Oceanologia

K. Witkowski, T. Krol, M. Lotocka, “The light scattering matrix of Chlorella vulgaris cells and its variability due to cell modification,” Oceanologia 36, 19–31 (1994).

Other

R. R. L. Guillard, “Culture of phytoplankton for feeding marine invertebrates,” in Culture of Marine Invertebrate Animals, W. L. Smith, M. H. Chanely, eds. (Plenum, New York, 1975), pp. 29–60.
[CrossRef]

C. D. Mobley, Light and Water; Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, New York, 1983).

M. R. Lewis, J. J. Cullen, “From cells to the ocean: satellite ocean color,” in Particle Analysis in Oceanography, S. Demers, ed. (Springer-Verlag, New York, 1991), pp. 325–337.
[CrossRef]

R. J. Olson, E. R. Zettler, M. D. DuRand, “Phytoplankton analysis using flow cytometry,” in Aquatic Microbial Ecology, P. F. Kemp, B. F. Shen, E. B. Shen, J. J. Cole, eds. (Lewis Publishers, Boca Raton, Fla., 1993), pp. 175–186.

K. K. Cavender-Bares, “Size distributions, population dynamics, and single-cell properties of marine plankton in diverse nutrient environments,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1999).

M. D. DuRand, “Phytoplankton growth and diel variations in beam attenuation through individual cell analysis,” Ph.D. dissertation (Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, Woods Hole, Mass., 1995).

S. W. Jeffrey, N. A. Welschmeyer, “Spectrophotometric and fluorometric equations in common use in oceanography,” in Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO, Paris, 1997), pp. 597–615.

S. W. Wright, S. W. Jeffrey, R. F. C. Mantoura, “Evaluation of methods and solvents for pigment extraction,” in Phytoplankton Pigments in Oceanography, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO, Paris, 1997), pp. 261–282.

S. G. Ackleson, D. B. Robins, J. A. Stephens, “Distributions in phytoplankton refractive index and size within the North Sea,” in Ocean Optics IX, S. G. Ackleson, ed., Proc. SPIE925, 317–325 (1988).
[CrossRef]

R. P. Bukata, J. H. Jerome, K. Y. Kondryatev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Flow chart showing how D, n, and n′ were derived from FCM measurements and Mie theory. The application of Mie theory to FCM measurements was optimized for measurements of standard particles (beads and oils) to develop weighting functions for FLS and SSC. The cell properties of D, n, and n′ were determined from FLS c , SSC c , and σ a from a lookup table, where FLS c and SSC c were calculated from FCM FLS and SSC by using empirical corrections derived for phytoplankton.

Fig. 2
Fig. 2

Flow cytometric angular weighting functions for (a) forward scattering [w fls (θ)] and (b) side scattering [w ssc (θ)], normalized to the scalar multipliers f 1 and f 2, respectively [see Eqs. (3) and (4)]. The values of fls 1 = 1.11 mm and ssc 1 = 26° were used in Eqs. (3) and (4) according to results from our optimization approach applied to an average data set of oils and beads (see Section 4)]. The angular range for FLS was set to 3° ≤ θ ≤ 19°, whereas the angular range for SSC was determined by the optimized variable ssc 1.

Fig. 3
Fig. 3

Relationship between spectrophotometrically determined absorption cross section σ a (488 nm) and flow cytometrically determined chlorophyll fluorescence, FCM CHL (680 nm), for a variety of phytoplankton species (Tables 1 and 2). Four of the 25 cultures used to determine this relationship are cyanobacteria.

Fig. 4
Fig. 4

Comparison of theory-based estimates and measurements of forward light scattering, FLS, and side light scattering, SSC, for beads and oil dispersions. The bead and oil measurements are an averaged data set over all experiments in the correction and application data sets. Several bead types were used in this comparison including 0.66-, 2.9-, 3.79-, 5.2-, and 6.2-μm polystyrene beads and 1.58-μm silica beads. Oil dispersions of heptane, nonane, and dodecane are shown. In cases in which the correspondence between FCM and Mie bead points is not obvious (i.e., the 5.2- and 6.2-μm polystyrene beads), the arrows show the match between bead points.

Fig. 5
Fig. 5

Results for cultures in the correction data set (see Table 1). Comparison is shown between cell properties, (a) mean diameter D, (b) real refractive index n, and (c) imaginary refractive index n′, estimated with the FCM-Mie approach and with independent and bulk methods. Independent D is from electronic particle counter measurements, and bulk n and n′ are determined from the inversion of bulk optical measurements: dotted lines, 1:1 lines; solid lines, linear regression forced through zero in the case of D and n′ and through one in the case of n.

Fig. 6
Fig. 6

Relationships between flow cytometrically measured and Mie-modeled values of (a) forward light scattering, FLS, and (b) side light scattering, SSC, for the correction data set (Table 1). Mie-modeled FLS and SSC values were determined from independent estimates of D and bulk estimates of n and n′: dashed lines, 1:1 lines; solid lines, least-squares regression results between logarithmic-measured and modeled values.

Fig. 7
Fig. 7

Results for the correction data set (see Table 1). Comparison is shown between cell properties, (a) diameter D, (b) real refractive index n, and (c) imaginary refractive index n′, estimated with the modified FCM-Mie method (i.e., with FLS c and SSC c ) and with independent and bulk methods. The correlation coefficients for the n and n′ relationships are not significant: dotted lines, 1:1 lines; solid lines, linear regression results.

Fig. 8
Fig. 8

Results for Micromonas sampled every 2 h over a 24-h period. Comparison is shown between cell properties, (a) diameter D, (b) real refractive index n, and (c) imaginary refractive index n′, estimated with the modified FCM-Mie method and with independent and bulk methods. FCM-Mie estimates of D, n, and n′ are shown, ○, before and, ●, after FLS and SSC corrections are applied: dotted lines, 1:1 lines.

Fig. 9
Fig. 9

Results for Nannochloris sampled every 2 h over a 24-h period. Comparison is shown between cell properties, (a) diameter D, (b) real refractive index n, and (c) imaginary refractive index n′, estimated with the modified FCM-Mie method and with independent and bulk methods. FCM-Mie estimates of D, n, and n′ are shown, ○, before and, ●, after FLS and SSC corrections are applied: dotted lines, 1:1 lines.

Fig. 10
Fig. 10

Empirical relationships between FCM forward light scattering, FLS, and measured cell diameter D for cells grown in conditions of low- and high-light levels: solid curve, difference in D between the two fits as a function of FCM FLS. Similar empirical relationships were previously used for determining cell D from measurements of FCM FLS.

Fig. 11
Fig. 11

Results for the application data set. Comparison is shown of cell diameter D estimates from the modified FCM-Mie method and from empirical relationships between FLS and measured cell D for cultures grown at (a) high and (b) low light. In each plot, lines for high-light calibration, low-light calibration, and FCM-Mie are linear regression results for cultures grown at high- and low-light levels, respectively; for clarity only the data points associated with the FCM-Mie approach are shown. The values of FCM-Mie D show a good correlation with independent D under both high- and low-light levels (slope, 0.97 in both cases), whereas the high- and low-light calibrations work well only for the intensities at which they were determined.

Fig. 12
Fig. 12

Results of comparison of theory-based estimates and FCM measurements of forward light scattering, FLS, and side light scattering, SSC, for inorganic particles (minerals) and organic particles (phytoplankton cells and oil dispersions). Values of n for the different minerals are montmorillonite (1.11–1.22), hectorite (1.11–1.13), kaolinite (1.14–1.17), illite (1.15–1.20), and average mineral (1.18). The corrected values of FCM FLS and SSC (FLS c , and SSC c ) are plotted for phytoplankton cultures from both the correction and the application data sets. The lines labeled Oils are theory-based estimates for heptane, nonane, and dodecane; the FCM-measured values are similar (see Fig. 4).

Fig. 13
Fig. 13

Results for a sample from 1-m depth collected 6 May 1997 from New England shelf waters. The distributions of (a) diameter D, (b) real refractive index n, and (c) imaginary refractive index n′ for Synechococcus, eukaryotic phytoplankton, and nonphytoplankton are estimated with the modified FCM Mie method. Mean values are indicated for each distribution. The n′ distribution for nonphytoplankton is not plotted, because these particles are assumed to be nonabsorbing.

Fig. 14
Fig. 14

Results for water samples collected 6 May 1997. Depth profiles of mean (a) diameter D, (b) real refractive index n, and (c) imaginary refractive index n′, for Synechococcus, eukaryotic phytoplankton, and nonphytoplankton are estimated with the modified FCM-Mie method. The mean values were calculated from property distributions, which were in turn derived from an analysis of each particle in a sample: dashed lines, bottom of the mixed layer at 16-m depth.

Tables (2)

Tables Icon

Table 1 Specifications for Cultures in the Correction Data Seta

Tables Icon

Table 2 Specifications for Cultures in the Application Data Sets

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Qaρ=1+2 exp-ρρ+2 expρ-1ρ2,
Qcρ=2-4 exp-ρ tan ζcos ζρsinρ-ζ+cos ζρ2 cosρ-2ζ+4cos ζρ2 cos 2ζ,
wflsθ=f11-2fls1πd tan2πθ360,
wsscθ=f2 sinπwaθ+wb/180,
distance=log10FLSt-log10FLSo2+log10SSCt-log10SSCo2+log10σa,t-log10σa,o2,

Metrics